-
Câu hỏi:
Tìm tập nghiệm S của bất phương trình \({\log _3}\sqrt {{x^2} - 5x + 6} + {\log _{\frac{1}{3}}}\sqrt {x - 2} \)
\(> \frac{1}{2}{\log _{\frac{1}{3}}}\left( {x + 3} \right).\)
-
A.
\(S = \left( {3;\sqrt {10} } \right)\)
-
B.
\(S = \left( {3; + \infty } \right)\)
-
C.
\(S = (3;9)\)
-
D.
\(S = \left( {\sqrt {10} ; + \infty } \right)\)
Lời giải tham khảo:
Đáp án đúng: D
Điều kiện: \(\left\{ {\begin{array}{*{20}{l}}
{x - 2 > 0}\\
{{x^2} - 5x + 6 > 0}
\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{x - 2 > 0}\\
{(x - 2)(x - 3) > 0}
\end{array}} \right. \Leftrightarrow x > 3.\)Khi đó:
\({\log _3}\sqrt {(x - 3)(x - 2)} - {\log _3}\sqrt {x - 2} \)
\(> - {\log _3}\sqrt {x + 3}\)
\(\begin{array}{l} \Leftrightarrow {\log _3}\frac{{\sqrt {(x - 3)(x - 2)} }}{{\sqrt {x - 2} }} + {\log _3}\sqrt {x + 3} > 0\\ \Leftrightarrow {\log _3}\sqrt {x - 3} + {\log _3}\sqrt {x + 3} > 0 \end{array}\)
\(\begin{array}{l}
\Leftrightarrow {\log _3}\sqrt {{x^2} - 9} > 0 \Leftrightarrow \sqrt {{x^2} - 9} > 1\\
\Leftrightarrow {x^2} > 10 \Leftrightarrow x > \sqrt {10}
\end{array}\)Vậy tập nghiệm bất phương trình là:
\(S = \left( {\sqrt {10} ; + \infty } \right).\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Giải bất phương trình \({9^x} - {\log _2}8 < {2.3^x}.\)
- Tìm tập nghiệm S của bất phương trình: \({2^{{x^2} - x + 1}} > {4^{x + 1}}.\)
- Giải bất phương trình \({5^{x + 2}} - {2^{x + 4}} > {5^{x + 1}} - {2^{x + 2}} + {2^{x + 3}}.\)
- Tìm tập nghiệm S của bất phương trình \(2{\log _3}\left( {4x - 3} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) \le 2.\)
- Giải bất phương trình \({\log _{\frac{1}{2}}}^2x + 3{\log _{\frac{1}{2}}}x + 2 \le 0\).
- Tìm tập nghiệm S của bất phương trình \({6^{2x + 3}} < {2^{4x - 5}}{.3^{4x - 5}}\).
- Giải bất phương trình \({\left( {\sqrt[3]{x} + 1} \right)^5} + \sqrt[3]{x}{.2^{x - 1}} \ge 1.\)
- Tìm tập nghiệm S của bất phương trình \({\log _3}\sqrt {{x^2} - 5x + 6} + {\log _{\frac{1}{3}}}\sqrt {x - 2} \) \(> \frac{1}{2}{\log _{\frac{1}{3}}}\left( {x + 3} \right).\)
- Giải bất phương trình \(x + {\log _3}\left( {x + 1} \right) > 3.\)
- Tìm tập nghiệm S của bất phương trình {log _2}left( {1 + {3^x}} ight) Tìm tập nghiệm S của bất phương trình \({\log _2}\left( {1 + {3^x}} \right) + {\log _{\left( {1 + {3^x}} \right)}}2 - 2 > 0\).+ {log _{left( {1 + {3^x}} ight)}}2 - 2 > 0