-
Câu hỏi:
Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC = 12. Vec tơ \(\overrightarrow {GB} - \overrightarrow {CG} \) có độ dài bằng bao nhiêu?
-
A.
2
-
B.
4
-
C.
8
-
D.
\(2\sqrt 3 \)
Lời giải tham khảo:
Đáp án đúng: B
Ta có: \(\overrightarrow {GB} - \overrightarrow {CG} = \overrightarrow {GB} + \overrightarrow {GC} = 2\overrightarrow {GE} = \frac{2}{3}\overrightarrow {AE} \) (Với E là trung điểm của BC)
\( \Rightarrow \left| {\overrightarrow {GB} - \overrightarrow {CG} } \right| = \frac{2}{3}\left| {\overrightarrow {AE} } \right| = \frac{2}{3}\frac{{BC}}{2} = \frac{{BC}}{3} = 4\)
Đáp án cần chọn là: B
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC. Hỏi \(\overrightarrow {MP} + \overrightarrow {NP} \) bằng vec tơ nào?
- Cho tam giác ABC vuông cân tại A có AB = a. Tính \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\)
- Cho tam giác ABC vuông tại A và có AB = 3, AC = 4. Tính \(\left| {\overrightarrow {CA} + \overrightarrow {AB} } \right|\)
- Cho hình vuông ABCD cạnh a, tâm O. Tính ∣ ∣ ∣ −−→ O B + −−→ O C ∣ ∣ ∣
- Cho lục giác đều ABCDEF và O là tâm của nó. Đẳng thức nào dưới đây là đẳng thức sai?
- Cho hình vuông ABCD cạnh a, tâm O. Khi đó: ∣ ∣ ∣ −−→ O A − −−→ B O ∣ ∣ ∣ =
- Cho các điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây sai?
- Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC = 12. Vec tơ −−→ G B − −−→ C G GB→-CG→ có độ dài bằng bao nhiêu?
- Gọi O là tâm của hình vuông ABCD. Vec tơ nào trong các vec tơ dưới đây bằng −−→ C A CA→ ?
- Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng?