-
Câu hỏi:
Cho tam giác ABC và tam giác NPM có BC = PM; ,góc B = góc \(P = 90^0\). Cần thêm một điều kiện gì để tam giác ABC và tam giác (NPM ) bằng nhau theo trường hợp cạnh huyền-cạnh góc vuông ?
-
A.
BA = PM
-
B.
BA = PN
-
C.
CA = MN
-
D.
BC = PM
Lời giải tham khảo:
Đáp án đúng: C
Ta có tam giác ABC và tam giác NPM có
\( BC = PM;{\mkern 1mu} \hat B = \hat P = {90^ \circ }\)
mà BC;PM là hai cạnh góc vuông của hai tam giác ABC và NPM nên để hai tam giác bằng nhau theo trường hợp cạnh huyền-cạnh góc vuông thì ta cần thêm hai cạnh huyền bằng nhau là CA=MN.
Đáp án cần chọn là: C
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Khẳng định sai là
- Cho biết tam giác (ABC ) và tam giác DEF có: AB = DE, góc B = góc E, góc A = góc D = 900
- Cho tam giác ABC và tam giác DEF có AB = DE , góc B = góc E, góc A = góc \(D = 90^0\) . Biết AC = 9cm. Độ dài DF là:
- Cho tam giác (MNP ) và tam giác KHI có: góc M = góc \(K = 90^0\); ,NP = HI; ,MN = HK. Hãy chọn khẳng định đúng.
- Cho tam giác ABC và tam giác KHI có: góc A = góc \(K = 90^0\); ,AB = KH; ,BC = HI. Phát biểu nào trong các phát biểu dưới đây là đúng:
- Cho tam gác ABC và tam giác DEF có: góc B = góc \(D = 90^0\), góc A = góc E, AC = FE. Hãy tính độ dài AB biết DE = 5cm.
- Cho tam giác PQR và tam giác TUV có (góc P = góc T = \(90^0\), \(\widehat {Q{\rm{ }}} = \widehat U\).
- Cho tam giác ABC và tam giác NPM có BC = PM; ,góc B = góc \(P = 90^0\). Cần thêm một điều kiện gì để tam giác ABC và tam giác (NPM ) bằng nhau theo trường hợp cạnh huyền-cạnh góc vuông ?
- Cho tam giác ABC vuông tại A (AB > AC). Tia phân giác của góc B cắt AC ở D. Kẻ DH vuông góc với BC.
- Cho biết tam giác ABC vuông cân tại A, có AC = 8cm. Một đường thẳng d bất kì luôn đi qua A.