-
Câu hỏi:
Cho tam giác ABC có A(–2; 2), B(6; –4), đỉnh C thuộc trục Ox. Tìm tọa độ trọng tâm G của tam giác ABC, biết rằng G thuộc trục Oy
-
A.
G(0;2/3)
-
B.
G(0;-2/3)
-
C.
G(3; -2/3)
-
D.
G(-3;-2/3)
Lời giải tham khảo:
Đáp án đúng: B
* Do đỉnh C thuộc trục Ox nên C(a;0).
G thuộc trục Oy nên G(0; b).
* G là trọng tâm tam giác ABC nên:
\(\left\{ {\begin{array}{*{20}{c}}
{{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}}\\
{{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}}
\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}
{0 = \frac{{ - 2 + 6 + a}}{3}}\\
{b = \frac{{2 + \left( { - 4} \right) + 0}}{3}}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
{a = - 4}\\
{b = \frac{{ - 2}}{3}}
\end{array}} \right.\)Tọa độ trọng tâm tam giác ABC là G(0;−23)
Đáp án B
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho \(\vec u\; = \;\left( {\frac{1}{2};\; - 5} \right);\;\vec v\left( {m;\;4} \right)\). Hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) cùng phương khi m bằng:
- Cho ba điểm sau M(2; 2), N( - 4; - 4), P(5; 5). Khẳng định nào sau đây đúng?
- Trong các vectơ sau đây, có bao nhiêu cặp vectơ cùng phương? \(\overrightarrow a \left( { - 1;\;2} \right);\;\overrightarrow b \left( {\frac{3}{2};\; - 3} \right);\;\overrightarrow c \left( {3;\; - 5} \right);\;\overrightarrow d \left( { - 2;\;\frac{{10}}{3}} \right)\)
- Trong mặt phẳng tọa độ Oxy cho các điểm M(0; 4), N(–3; 2) và P(9; –3). Tọa độ trung điểm I của đoạn thẳng MN là:
- Trong mặt phẳng tọa độ Oxy cho các điểm M(0; 4), N(–3; 2) và P(9; –3). Tọa độ điểm M’ đối xứng với điểm M qua điểm P là:
- Trong mặt phẳng tọa độ Oxy cho các điểm M(0; 4), N(–3; 2) và P(9; –3). Tọa độ trọng tâm G của tam gác MNP là:
- Trong mặt phẳng tọa độ Oxy cho các điểm M(0; 4), N(–3; 2) và P(9; –3). Tọa độ điểm D sao cho P là trọng tâm tam giác MND là:
- Cho tam giác ABC có A(–2; 2), B(6; –4), đỉnh C thuộc trục Ox. Tìm tọa độ trọng tâm G của tam giác ABC, biết rằng G thuộc trục Oy
- Cho tam giác ABC có A(–1; 1); B(5; –3); C(0; 2). Gọi G là trọng tâm của tam giác ABC. Hãy xác định tọa độ của điểm G1 là điểm đối xứng của G qua trục Oy
- Cho M(2; 0), N(2; 2), P(–1; 3) là trung điểm của các cạnh BC, CA, AB của tam giác ABC. Tọa độ điểm B là: