-
Câu hỏi:
Cho tam giác ABC; các phân giác AD, BE, CF gặp nhau tại I. Tính \(\widehat {IAC} + \widehat {IBC} + \widehat {IC{\rm{A}}}.\)
-
A.
\({90^0}\)
-
B.
\({60^0}\)
-
C.
\({40^0}\)
-
D.
\({45^0}\)
Lời giải tham khảo:
Đáp án đúng: A
Ta có \(\widehat A + \widehat B + \widehat C = {180^0}\)
\( \Rightarrow \dfrac{{\widehat A}}{2} + \dfrac{{\widehat B}}{ 2} + \dfrac{{\widehat C}}{ 2} = {90^0}\)
hay \(\widehat {IAC} + \widehat {IBC} + \widehat {ICA} = {90^0}.\)Chọn đáp án A
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Có điểm E nằm trên tia phân giác góc A của tam giác ABC ta có
- Cho góc ∠xOy = 600, điểm A nằm trong góc đó và cùng cách đều Ox và Oy một khoảng bằng 6 cm. Độ dài đoạn thẳng OA là:
- Cho điểm A nằm trong góc vuông xOy. Gọi M và N lần lượt là chân đường vuông góc kẻ từ đỉnh A đến Ox và Oy. Biết AM = AN = 4 cm. Khi đó:
- Cho ΔABC có ∠A = 70°, các đường phân giác của BE và CD của ∠B và ∠C cắt nhau tại I. Tính ∠BIC ?
- Cho tam giác ABC cân tại A. Trên cạnh AB và AC lần lượt lấy hai điểm P và Q sao cho AP = AQ. Gọi O là giao điểm của CP và BQ. Khi đó
- Cho tam giác nhọn ABC, đường trung tuyến AM. Điểm D thuộc trung tuyến AM sao cho D cách đều hai cạnh của góc B. Khi xác định điểm D, khẳng định nào sau đây là đúng?
- Cho điểm M nằm trên tia phân giác At của góc xAy nhọn. Kẻ MH ⊥ Ax ở H và MK ⊥ Ay ở K. So sánh MH và MK.
- Xét bài toán: 'Cho một điểm M nằm bên trong góc xOy sao cho khoảng cách từ M đến hai cạnh Ox, Oy bằng nhau. Chứng tỏ rằng OM là tia phân giác của góc xOy'
- Cho góc ∠xOy có Oz là tia phân giác, M là một điểm trên Oz sao cho khoảng cách từu M đến Oy là 5 cm. Khoảng cách từ M đến Ox là:
- Cho tam giác ABC; các phân giác AD, BE, CF gặp nhau tại I. Tính \(\widehat {IAC} + \widehat {IBC} + \widehat {IC{\rm{A}}}.\)