-
Câu hỏi:
Cho điểm A nằm trong góc vuông xOy. Gọi M và N lần lượt là chân đường vuông góc kẻ từ đỉnh A đến Ox và Oy. Biết AM = AN = 4 cm. Khi đó:
-
A.
OM = ON > 4 cm
-
B.
OM = ON < 4 cm
-
C.
OM = ON = 4 cm
-
D.
OM ≠ ON
Lời giải tham khảo:
Đáp án đúng: C
Vì A nằm trong góc xOy và cách đều hai tia Ox và Oy nên A nằm trên tia phân giác của góc xOy hay OA là tia phân giác của góc xOy
Suy ra tam giác MAO vuông cân tại M nên MO = MA = 4 cm
Chứng minh tương tự ta cũng có NOA vuông cân tại N nên NO = NA = 4 cm
Vậy OM = ON = 4 cm.
Chọn đáp án C
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Có điểm E nằm trên tia phân giác góc A của tam giác ABC ta có
- Cho góc ∠xOy = 600, điểm A nằm trong góc đó và cùng cách đều Ox và Oy một khoảng bằng 6 cm. Độ dài đoạn thẳng OA là:
- Cho điểm A nằm trong góc vuông xOy. Gọi M và N lần lượt là chân đường vuông góc kẻ từ đỉnh A đến Ox và Oy. Biết AM = AN = 4 cm. Khi đó:
- Cho ΔABC có ∠A = 70°, các đường phân giác của BE và CD của ∠B và ∠C cắt nhau tại I. Tính ∠BIC ?
- Cho tam giác ABC cân tại A. Trên cạnh AB và AC lần lượt lấy hai điểm P và Q sao cho AP = AQ. Gọi O là giao điểm của CP và BQ. Khi đó
- Cho tam giác nhọn ABC, đường trung tuyến AM. Điểm D thuộc trung tuyến AM sao cho D cách đều hai cạnh của góc B. Khi xác định điểm D, khẳng định nào sau đây là đúng?
- Cho điểm M nằm trên tia phân giác At của góc xAy nhọn. Kẻ MH ⊥ Ax ở H và MK ⊥ Ay ở K. So sánh MH và MK.
- Xét bài toán: 'Cho một điểm M nằm bên trong góc xOy sao cho khoảng cách từ M đến hai cạnh Ox, Oy bằng nhau. Chứng tỏ rằng OM là tia phân giác của góc xOy'
- Cho góc ∠xOy có Oz là tia phân giác, M là một điểm trên Oz sao cho khoảng cách từu M đến Oy là 5 cm. Khoảng cách từ M đến Ox là:
- Cho tam giác ABC; các phân giác AD, BE, CF gặp nhau tại I. Tính \(\widehat {IAC} + \widehat {IBC} + \widehat {IC{\rm{A}}}.\)