-
Câu hỏi:
Cho mệnh đề chứa biến "P(x) : x > x3 . Chọn kết luận đúng:
-
A.
P(1) đúng
-
B.
P(\(\frac{1}{3}\)) đúng
-
C.
∀x ∈ N, P(x) đúng
-
D.
∃x ∈ N, P(x) đúng
Lời giải tham khảo:
Đáp án đúng: B
Đáp án A: P(1) : 1 > 13 đây là mệnh đề sai nên A sai.
Đáp án B: \(\left( {\frac{1}{3}} \right):\frac{1}{3} > {\left( {\frac{1}{3}} \right)^3}\) đây là mệnh đề đúng nên B đúng.
Đáp án C: ∀x ∈ N, x > x3 là mệnh đề sai vì P(1) là mệnh đề sai nên C sai.
Đáp án D: ∃x ∈ N, x > x3 là mệnh đề sai vì x – x3 = x(1−x)(1+x) ≤ 0 với mọi số tự nhiên nên không tồn tại số tự nhiên x nào thỏa mãn x > x3 nên D sai.
Chọn B
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho mệnh đề: 'Với mọi số nguyên n không chia hết cho 3, \(n^2 - 1\) chia hết cho 3'. Mệnh đề phủ định của mệnh đề trên là mệnh đề nào dưới đây?
- Cho mệnh đề chứa biến P(m): 'm ∈ Z: \(2m^2 - 1\) chia hết cho 7'. Mệnh đề đúng là:
- Cho A = {x ∈ R: |x| ≥ 2}. Phần bù của A trong tập số thực R là:
- Phát biểu mệnh đề P ⇔ Q và xét tính đúng sai của nó với:
- Chọn câu sai:Cho các mệnh đề: A: “Nếu ΔABC đều có cạnh bằng a, đường cao là h thì \(h = \frac{{a\sqrt 3 }}{2}\) ”
- Các khẳng định sau, khẳng định đã cho nào đúng?
- Cho mệnh đề chứa biến 'P(x) : x > \(x^3\) . Chọn kết luận đúng:
- Trong các mệnh đề sau, mệnh đề đã cho nào sai?
- Trong các mệnh đề sau, mệnh đề cho nào đúng?
- Xác định số phần tử của tập hợp X = {n ∈ N|n⋮4, n < 2017}