OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hình lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy là tam giác đều cạnh \(a.\) Góc giữa đường thẳng \(A{B}'\) và mặt phẳng \(\left( BC{C}'{B}' \right)\) bằng \(30{}^\circ \). Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AB\) và \({B}'{C}'\). Mặt phẳng \(\left( {A}'MN \right)\) cắt \(BC\) tại \(P\). Thể tích khối đa diện \(MBP.{A}'{B}'N\) bằng?

    • A. 
      \(\frac{\sqrt{6}{{a}^{3}}}{32}.\)        
    • B. 
      \(\frac{\sqrt{6}{{a}^{3}}}{96}.\)
    • C. 
      \(\frac{7\sqrt{6}{{a}^{3}}}{32}.\)                   
    • D. 
      \(\frac{7\sqrt{6}{{a}^{3}}}{96}.\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Gọi \(D\) là trung điểm \(BC\), \(I\) là giao điểm của \(AM\) và \(B{B}'\).

    Theo giả thiết thì:

    \(\left\{ \begin{align} & \widehat{A{B}'D}=30{}^\circ \\ & IN\cap BC=P \\ \end{align} \right.\\ \Rightarrow {{V}_{MBP.{A}'{B}'N}}={{V}_{I.{A}'{B}'N}}-{{V}_{I.MBP}}\)

    Khi đó: \(A{B}'=\frac{AD}{\sin 30{}^\circ }=a\sqrt{3}\)\( \Rightarrow A{A}'=\sqrt{A{{{{B}'}}^{2}}-{A}'{{{{B}'}}^{2}}}=a\sqrt{2}\)\( \Rightarrow {{V}_{ABC.{A}'{B}'{C}'}}=\frac{{{a}^{3}}\sqrt{6}}{4}\)

    Do \(M\) là trung điểm \(AB\) nên\(B\) là trung điểm \(I{B}'\) thì:

    \(d\left( I,\left( {A}'{B}'{C}' \right) \right)\)\( =2.d\left( \left( ABC \right),\left( {A}'{B}'{C}' \right) \right)\) và \(P\) là trung điểm \(BD\).

    \(\Rightarrow \left\{ \begin{align} & {{V}_{I.MBP}}=\frac{1}{3}{{S}_{MBP}}.d\left( I,\left( MBP \right) \right) \\ & {{V}_{I.{A}'{B}'N}}=\frac{1}{3}{{S}_{{A}'{B}'N}}.d\left( I,\left( {A}'{B}'N \right) \right) \\ \end{align} \right.\)

    \(\Rightarrow \left\{ \begin{align} & {{V}_{I.MBP}}=\frac{1}{3}.\frac{1}{8}{{S}_{ABC}}.d\left( \left( ABC \right),\left( {A}'{B}'{C}' \right) \right)=\frac{1}{24}{{V}_{ABC.{A}'{B}'{C}'}} \\ & {{V}_{I.{A}'{B}'N}}=\frac{1}{3}.\frac{1}{2}.{{S}_{{A}'{B}'{C}'}}.2d\left( \left( ABC \right),\left( {A}'{B}'{C}' \right) \right)=\frac{1}{3}{{V}_{ABC.{A}'{B}'{C}'}} \\ \end{align} \right.\)

    Vậy \({{V}_{MBP.{A}'{B}'N}}\)\( ={{V}_{I.{A}'{B}'N}}-{{V}_{I.MBP}}\)\( =\frac{7}{24}{{V}_{ABC.{A}'{B}'{C}'}}\)\( =\frac{7\sqrt{6}{{a}^{3}}}{96}\).

    Chọn D

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF