OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hàm số \(y=f(x)\) có đạo hàm là \({f}'(x)=(2-x){{\left( {{x}^{3}}-{{x}^{2}}-m \right)}^{2021}},\forall x\in \mathbb{R}\). Có bao nhiêu giá trị nguyên thuộc khoảng \((-2021 ; 2022)\) của tham số \(\mathrm{m}\) để hàm số \(g(x)=f\left(x^{2}-2\right)+\frac{1}{2} x^{4}-4 x^{2}+2022\) có đúng 5 điểm cực trị?

    • A. 
      2030.           
    • B. 
      2031.                 
    • C. 
      2032.                  
    • D. 
      2033

    Lời giải tham khảo:

    Đáp án đúng: C

    \(g(x)=f\left( {{x}^{2}}-2 \right)+\frac{1}{2}{{x}^{4}}-4{{x}^{2}}+2022\)\( \Rightarrow {g}'(x)=2x.{f}'\left( {{x}^{2}}-2 \right)+2{{x}^{3}}-8x.\)

    \({g}'(x)=0.\)

    \(\Leftrightarrow \left[ \begin{align} & x=0 \\ & {f}'\left( {{x}^{2}}-2 \right)+{{x}^{2}}-4=0 \\ \end{align} \right.\)

    \({f}'(x)=(2-x){{\left( {{x}^{3}}-{{x}^{2}}-m \right)}^{2021}}\)\( \Rightarrow {f}'\left( {{x}^{2}}-2 \right)=\left( 4-{{x}^{2}} \right){{\left( {{\left( {{x}^{2}}-2 \right)}^{3}}-{{\left( {{x}^{2}}-2 \right)}^{2}}-m \right)}^{2021}}\)\({f}'\left( {{x}^{2}}-2 \right)+{{x}^{2}}-4=0\)\( \Leftrightarrow \left( {{x}^{2}}-4 \right)\left[ 1-{{\left( {{\left( {{x}^{2}}-2 \right)}^{3}}-{{\left( {{x}^{2}}-2 \right)}^{2}}-m \right)}^{2021}} \right]=0\)

    \(\Leftrightarrow \left[ \begin{align} & {{x}^{2}}-4=0 \\ & 1-{{\left( {{\left( {{x}^{2}}-2 \right)}^{3}}-{{\left( {{x}^{2}}-2 \right)}^{2}}-m \right)}^{2021}}=0 \\ \end{align} \right.\)

    \(\Leftrightarrow \left[ \begin{align} & x=2 \\ & x=-2 \\ & {{\left( {{x}^{2}}-2 \right)}^{3}}-{{\left( {{x}^{2}}-2 \right)}^{2}}-m=1 \\ \end{align} \right.\)

    Xét phương trình \({{\left( {{x}^{2}}-2 \right)}^{3}}-{{\left( {{x}^{2}}-2 \right)}^{2}}-m=1\ \left( 1 \right)\).

    Đặt \(t={{x}^{2}}-2\Rightarrow t\in \left[ -2;+\infty  \right)\).

    Ta được phương trình \({{t}^{3}}-{{t}^{2}}=m+1\).

    Xét hàm \(g\left( t \right)={{t}^{3}}-{{t}^{2}}\).

    Để hàm số có đúng 5 cực trị điều kiện là có đúng 2 nghiệm phân biệt khác 0 và - 2, 2. Với mỗi \(t\in \left( -2;+\infty  \right)\) thì phương trình \(t={{x}^{2}}-2\) có hai nghiệm \(x\) phân biệt khác 0.

    Do đó, yêu cầu bài toán

    \(\Leftrightarrow \left[ \begin{align} & -12< m+1 \le \frac{-4}{27} \\ & 0\le m+1<2022 \\ & m\in Z \\ & m+1\ne 4 \\ \end{align} \right.\)

    \(\Leftrightarrow \left[ \begin{align} & -13 < m\le \frac{-31}{27} \\ & -1\le m+1<2021 \\ & m\in Z \\ & m\ne 3 \\ \end{align} \right.\)

    \(\Leftrightarrow m\in \left\{ -12;...;-2;-1;...;2;4;...;2020 \right\}\).

    Vậy có 2032 giá trị của \(\mathrm{m}\) thỏa mãn yêu cầu bài toán.

    Chọn C

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF