OPTADS360
AANETWORK
AMBIENT
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và \(ABC=60^0\) Hình chiếu vuông góc của điểm S lên mặt phẳng (ABCD) trùng với trọng tâm tam giác ABC. Gọi \(\varphi \) là goc giữa đường thẳng SB và mặt phẳng (SCD), tính \(\sin \varphi \)  biết rằng SB = a.

    • A. 
      \(\sin \varphi  = \frac{1}{4}.\)
    • B. 
      \(\sin \varphi  = \frac{1}{2}.\)
    • C. 
      \(\sin \varphi  = \frac{{\sqrt 3 }}{2}.\)
    • D. 
      \(\sin \varphi  = \frac{{\sqrt 2 }}{2}.\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Gọi M là trung điểm của SD, nhận xét góc giữa SB và (SCD) cũng bằng góc giữa OM và (SCD) (Vì OM//SB).

    Gọi H là hình chiếu của O trên (SCD)

    \( \Rightarrow \left( {OM,(SCD)} \right) = (OM,MH) = OMH.\) 

    Trong (SBD) kẻ OE//SH, khi đó tứ diện OECD là tứ diện vuông nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{C^2}}} + \frac{1}{{O{D^2}}} + \frac{1}{{O{E^2}}}.\) 

    Ta dễ dàng tính được \(OC = \frac{a}{2},OD = \frac{{a\sqrt 3 }}{2}.\) 

    Lại có: \(\frac{{OE}}{{SH}} = \frac{{OD}}{{HD}} = \frac{3}{4} \Rightarrow OE = \frac{3}{4}SH,\) mà \(SH = \sqrt {S{B^2} - B{H^2}}  = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}  = \frac{{a\sqrt 6 }}{3}\) 

    Do đó \(OE = \frac{3}{4}SH = \frac{3}{4}.\frac{{a\sqrt 6 }}{3} = \frac{{a\sqrt 6 }}{4}.\) 

    Suy ra \(\frac{1}{{O{H^2}}} = \frac{1}{{{{\left( {a/2} \right)}^2}}} + \frac{1}{{{{\left( {a\sqrt 3 /2} \right)}^2}}} + \frac{1}{{{{\left( {a\sqrt 6 /4} \right)}^2}}} = \frac{8}{{{a^2}}} \Rightarrow OH = \frac{{a\sqrt 2 }}{4}.\) 

    Tam giác OMH vuông tại H có \(OM = \frac{1}{2}SB = \frac{a}{2},OH = \frac{{a\sqrt 2 }}{4} \Rightarrow {\mathop{\rm sinOMH}\nolimits}  = \frac{{OH}}{{OM}} = \frac{{\sqrt 2 }}{2}.\) 

    Vậy \(\sin \varphi  = \frac{{\sqrt 2 }}{2}.\) 

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF