-
Câu hỏi:
Cho \(\Delta \)ABC . Gọi I là điểm trên cạnh BC sao cho \(2 C I=3 B I\) và J là điểm trên tia đối của BC sao cho \(5 J B=2 J C\). Tính \(\overrightarrow{A I}, \overrightarrow{A J}\) theo \(\vec{a}=\overrightarrow{A B}, \vec{b}=\overrightarrow{A C}\).
-
A.
\(\overrightarrow{A I}=\frac{3}{5} \vec{a}+\frac{2}{5} \vec{b}, \overrightarrow{A J}=\frac{5}{3} \vec{a}-\frac{2}{3} \vec{b}\)
-
B.
\(\overrightarrow{A I}=\frac{3}{5} \vec{a}-\frac{2}{5} \vec{b}, \overrightarrow{A J}=\frac{5}{3} a-\frac{2}{3} \vec{b}\)
-
C.
\(\overrightarrow{A I}=\frac{2}{5} \vec{a}+\frac{3}{5} \vec{b}, \overrightarrow{A J}=\frac{5}{3} \vec{a}-\frac{2}{3} \vec{b}\)
-
D.
\(\overrightarrow{A I}=\frac{3}{5} \vec{a}+\frac{2}{5} \vec{b}, \overrightarrow{A J}=\frac{5}{3} \vec{a}+\frac{2}{3} \vec{b}\)
Lời giải tham khảo:
Đáp án đúng: A
Ta có: \(2 \overrightarrow{I C}=-3 \overrightarrow{I B} \Leftrightarrow 2(\overrightarrow{A C}-\overrightarrow{A I})=-3(\overrightarrow{A B}-\overrightarrow{A I})\)
\(\Leftrightarrow 5 \overrightarrow{A I}=3 \overrightarrow{A B}+2 \overrightarrow{A C} \Leftrightarrow \overrightarrow{A I}=\frac{3}{5} \overrightarrow{A B}+\frac{2}{5} \overrightarrow{A C}\)
Ta lại có: \(5 \overrightarrow{J B}=2 \overrightarrow{J C} \Leftrightarrow 5(\overrightarrow{A B}-\overrightarrow{A J})=2(\overrightarrow{A C}-\overrightarrow{A J})\)
\(\Leftrightarrow 3 \overrightarrow{A J}=5 \overrightarrow{A B}-2 \overrightarrow{A C} \Leftrightarrow \overrightarrow{A J}=\frac{5}{3} \overrightarrow{A B}-\frac{2}{3} \overrightarrow{A C}\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho \(\Delta \)ABC . Gọi I là điểm trên cạnh BC sao cho \(2 C I=3 B I\) và J là điểm trên tia đối của BC sao cho \(5 J B=2 J C\). Tính \(\overrightarrow{A I}, \overrightarrow{A J}\) theo \(\vec{a}=\overrightarrow{A B}, \vec{b}=\overrightarrow{A C}\).
- Cho hình bình hành ABCD. Gọi M, N là các điểm nằm trên các cạnh AB và CD sao cho \(A M=\frac{1}{3} A B, C N=\frac{1}{2} C D\) . Gọi G là trọng tâm của \(\Delta B M N\). Hãy phân tích \(\overrightarrow{A G}\) theo hai vectơ \(\overrightarrow{A B}=\vec{a}, \overrightarrow{A C}=\vec{b}\).
- Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm của cạnh AB, BC, CD, DE. Gọi I, J lần lượt là trung điểm của các đoạn MP và NQ. Đẳng thức nào sau đây là điều kiện cần và đủ để \(I J / / A E\) ?
- Cho \(\Delta A B C\). Lấy các điểm M, N, P sao cho \(\overrightarrow{M B}=3 \overrightarrow{M C}, \overrightarrow{N A}+3 \overrightarrow{N C}=\overrightarrow{0}, \overrightarrow{P A}+\overrightarrow{P B}=\overrightarrow{0}\). Đẳng thức nào sau đây là điều kiện cần và đủ để M, N, P thẳng hàng
- Cho hình bình hành ABCD có E, N lần lượt là trung điểm của BC, AE. Tìm các số p và q sao cho \(\overrightarrow{D N}=p \overrightarrow{A B}+q \overrightarrow{A C}\)
- Cho \(\Delta \)ABC . Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Phân tích \(\overrightarrow{A B}\) theo hai vectơ \(\overrightarrow{B N} \text { và } \overrightarrow{C P}\)
- Ba trung tuyến AM, BN, CP của tam giác ABC đồng quy tại G . Hỏi vectơ \(\overrightarrow{A M}+\overrightarrow{B N}+\overrightarrow{C P}\) bằng vectơ nào?
- Cho tam giác ABC .M và N là hai điểm xác định thỏa mãn: \(\overrightarrow{M A}+3 \overrightarrow{M C}=\overrightarrow{0} \text { và } \overrightarrow{N A}+2 \overrightarrow{N B}+3 \overrightarrow{N C}=\overrightarrow{0}\). Đẳng thức nào sau đây là điều kiện cần và đủ để M, N, B thẳng hàng?
- Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bằng 2a và \(\widehat{A B C}=45^{\circ}\). Tính \(|\overrightarrow{C B}-\overrightarrow{A D}+\overrightarrow{A C}|\)
- Cho tam giác \(\Delta ABC\) vuông tại A có AB= 3 cm , BC=5 cm. Khi đó độ dài \(|\overrightarrow{B A}+\overrightarrow{B C}|\) là: