-
Câu hỏi:
Cho \(a > 0;b > 0\) thỏa mãn \({a^2} + {b^2} = 7ab\). Khẳng định nào sau đây là đúng?
-
A.
\(3\log (a + b) = \frac{1}{2}({\log _a} + {\log _b})\)
-
B.
\(\log \frac{{a + b}}{3} = \frac{1}{2}({\log _a} + {\log _b})\)
-
C.
\(2({\log _a} + {\log _b}) = \log (7ab)\)
-
D.
\(2({\log _a} + {\log _b}) = \log (7ab)\)
Lời giải tham khảo:
Đáp án đúng: B
Ta có: \({a^2} + {b^2} = 7{\rm{a}}b \Leftrightarrow {\left( {a + b} \right)^2} = 9ab\)
\(\Leftrightarrow \frac{{{{\left( {a + b} \right)}^2}}}{{{3^2}}} = ab \Leftrightarrow \log {\left( {\frac{{a + b}}{3}} \right)^2} = \log ab\)
\(2\log \frac{{a + b}}{3} = \log a + {\mathop{\rm logb}\nolimits}\)
\(\Leftrightarrow \log \frac{{a + b}}{3} = \frac{1}{2}\left( {\log a + \log b} \right)\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Rút gọn biểu thức \(A = {\log _a}\frac{{{a^2}.\sqrt[3]{{{a^2}}}.a.\sqrt[5]{{{a^4}}}}}{{\sqrt[3]{a}}}\) với \(a > 0;\,\,a \ne 1\).
- Tính giá trị của biểu thức \(P = {\log _a}a\sqrt[3]{{a\sqrt[3]{{a\sqrt a }}}}\) với \(0 < a \ne 1.\)
- Đặt \(a = {\log _2}3,b = {\log _5}3\). Hãy biểu diễn \({\log _6}45\) theo a và b.
- Cho \({\log _{12}}8 = a\). Biểu diễn \({\log _2}3\) theo a.
- Cho \(a > 0;b > 0\) thỏa mãn \({a^2} + {b^2} = 7ab\). Khẳng định nào sau đây là đúng?
- Đặt \(a = \log_{2}3, \b = \log_{3}5\). Hãy tính biểu thức \(P = \log_660 theo a và b
- Rút gọn biểu thức \(P = \log \frac{a}{b} + \log \frac{c}{d} + \log \frac{b}{c} - \log \frac{{ay}}{{dx}}\)
- 10log7 bằng:
- Tính giá trị của biểu thức \(log_3100 - log_318 - log_350\)
- \(log125\) bằng