OPTADS360
ATNETWORK
ADS_ZUNIA
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Biểu thức \(f\left( x \right) = \frac{{11x + 3}}{{ - \,{x^2} + 5x - 7}}\) nhận giá trị dương khi và chỉ khi 

    • A. 
      \(x \in \left( { - \frac{3}{{11}}; + \,\infty } \right).\)
    • B. 
      \(x \in \left( { - \frac{3}{{11}};5} \right).\)
    • C. 
      \(x \in \left( { - \,\infty ; - \frac{3}{{11}}} \right).\)
    • D. 
      \(x \in \left( { - \,5; - \,\frac{3}{{11}}} \right).\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Ta có \(- \,{x^2} + 5x - 7 = - \,\left( {{x^2} - 5x + 7} \right) = - \,{\left( {x - \frac{5}{2}} \right)^2} - \frac{3}{4} < 0,\,\,\forall x \in R.\)

    Do đó, bất phương trình \(f\left( x \right) > 0 \Leftrightarrow 11x + 3 < 0 \Leftrightarrow x < - \frac{3}{{11}} \Leftrightarrow x \in \left( { - \,\infty ; - \frac{3}{{11}}} \right).\)

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF