OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 34 trang 84 SBT Toán 8 Tập 1

Giải bài 34 tr 84 sách BT Toán lớp 8 Tập 1

Cho tam giác ABC, điểm D thuộc cạnh AC sao cho \(\displaystyle AD = {1 \over 2}DC\). Gọi M là trung điểm của BC, I là giao điểm của \(BD\) và \(AM.\) Chứng minh rằng \(AI = IM.\)

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng định nghĩa, tính chất đường trung bình của tam giác:

+) Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

+) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

+) Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.

Lời giải chi tiết

Gọi \(E\) là trung điểm của \(DC\)

Trong \(∆ BDC\) ta có:

\(M\) là trung điểm của \(BC \;\;(gt)\)

\(E\) là trung điểm của \(CD \)

Nên \(ME\) là đường trung bình của \(∆ BCD\)

\(⇒ ME // BD\) ( tính chất đường trung bình của tam giác)

Suy ra: \(DI // ME\)

\(AD =\displaystyle {1 \over 2}DC\)  (gt)

\(DE = \displaystyle {1 \over 2}DC\) (theo cách vẽ)

\(⇒AD = DE\) nên D là trung điểm của AE. 

Trong \(\Delta AME\) có:

+) \(DI // ME\)

 +) \(D\) là trung điểm của \(AE\)

\(\Rightarrow\) \(ID\) là đường trung bình của \(\Delta AME.\)

\(\Rightarrow I\) là trung điểm của \(AM.\)

Nên \(AI = IM\)

 

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 34 trang 84 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF