OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài 8 trang 81 SGK Toán 8 Chân trời sáng tạo Tập 1 - KNTT

Bài 8 trang 81 SGK Toán 8 Chân trời sáng tạo Tập 1

Cho tam giác \(ABC\) cân tại A, gọi M là trung điểm của BC. Lấy điểm D đối xứng với điểm A qua BC.

a) Chứng minh tứ giác \(ABDC\) là hình thoi?

b) Gọi E, F lần lượt là trung điểm của AB và AC, lấy điểm O sao cho E là trung điểm của OM. Chứng minh hai tam giác \(AOB\) và \(MBO\) vuông và bằng nhau?

c) Chứng minh tứ giác \(AEMF\) là hình thoi?

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 8

Bài 8 trang 81 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

a) Ta có D đối xứng với A qua BC nên M là trung điểm của AD và AD ⊥ BC.

Tứ giác \(ABDC\) có hai đường chéo AD và BD cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

Lại có hai đường chéo AD ⊥ BC nên hình bình hành \(ABDC\) là hình thoi.

b) Ta có E là trung điểm của AB và OM nên hai đường chéo của tứ giác \(OAMB\) cắt nhau tại trung điểm của mỗi đường.

Do đó tứ giác \(OAMB\) là hình bình hành.

Suy ra \(OA // BM\) và \(OB // AM\).

Ta có \(OB // AM\) và AM ⊥ BM nên OB ⊥ BM, do đó \(\Delta{MBO}\) vuông tại B.

Ta có \(OA // BM\) và OB ⊥ BM nên OA ⊥ OB, do đó \(\Delta{AOB}\) vuông tại O.

Do OAMB là hình bình hành nên \(OA = BM\) và \(OB = AM\).

Xét DMBO vuông tại B và DAOB vuông tại O có:

\(OB = AM; BM = OA\)

Do đó \(\Delta{MBO} = \Delta{AOB}\) (hai cạnh góc vuông).

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài 8 trang 81 SGK Toán 8 Chân trời sáng tạo Tập 1 - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF