OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài 3.17 trang 61 SGK Toán 8 Kết nối tri thức tập 1 - KNTT

Bài 3.17 trang 61 SGK Toán 8 Kết nối tri thức tập 1

Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Chứng minh rằng:

a) Hai tứ giác AEFD, AECF là những hình bình hành;

b) EF = AD, AF = EC.

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài 3.17

a) Vì ABCD là hình bình hành nên AB = CD, AB // CD.

Mà E, F lần lượt là trung điểm của AB, CD nên AE = BE = 12AB, CF = DF = 12CD

Do đó AE = BE = CF = DF.

- Xét tứ giác AEFD có:

AE // DF (vì AB // CD);

AE = DF (chứng minh trên)

Do đó tứ giác AEFD là hình bình hành.

- Xét tứ giác AECF có:

AE // CF (vì AB // CD);

AE = CF (chứng minh trên)

Do đó tứ giác AECF là hình bình hành.

Vậy hai tứ giác AEFD, AECF là những hình bình hành.

b) Vì tứ giác AEFD là hình bình hành nên EF = AD.

Vì tứ giác AECF là hình bình hành nên AF = EC.

Vậy EF = AD, AF = EC.

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài 3.17 trang 61 SGK Toán 8 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF