Giải bài 7.34 trang 43 SGK Toán 7 Kết nối tri thức tập 2
Trong mỗi trường hợp sau đây, tìm thương Q(x) và dư R(x) trong phép chia F(x) cho G(x) rồi biểu diễn F(x) dưới dạng:
F(x) = G(x) . Q(x) + R(x)
a) F(x) = 6x4 – 3x3 + 15x2 + 2x – 1 ; G(x) = 3x2
b) F(x) = 12x4 + 10x3 – x – 3 ; G(x) = 3x2 + x + 1
Hướng dẫn giải chi tiết Giải bài 7.34
Phương pháp giải
+) Muốn chia đa thức A cho đa thức B, ta làm như sau:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.
Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B
Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3
Bước 5: Làm tương tự như trên
Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.
+) Viết A = B. Q + R
Lời giải chi tiết
a)
Thương Q(x) = 2x2 – x + 5
Dư R(x) = 2x – 1
Ta có: F(x) = 3x2 . (2x2 – x + 5) + 2x – 1
b)
Thương Q(x) = 4x2 + 2x – 2
Dư R(x) = -x – 1
Ta có: F(x) = (3x2 + x + 1) . (4x2 + 2x – 2) – x – 1
-- Mod Toán 7 HỌC247
Bài tập SGK khác
Giải bài 7.32 trang 43 SGK Toán 7 Kết nối tri thức tập 2 - KNTT
Giải bài 7.33 trang 43 SGK Toán 7 Kết nối tri thức tập 2 - KNTT
Giải bài 7.35 trang 43 SGK Toán 7 Kết nối tri thức tập 2 - KNTT
Giải bài 7.25 trang 34 SBT Toán 7 Kết nối tri thức tập 2 - KNTT
Giải bài 7.26 trang 34 SBT Toán 7 Kết nối tri thức tập 2 - KNTT
Giải bài 7.27 trang 34 SBT Toán 7 Kết nối tri thức tập 2 - KNTT
Giải bài 7.28 trang 34 SBT Toán 7 Kết nối tri thức tập 2 - KNTT
Giải bài 7.29 trang 34 SBT Toán 7 Kết nối tri thức tập 2 - KNTT
Giải bài 7.30 trang 34 SBT Toán 7 Kết nối tri thức tập 2 - KNTT
Giải bài 7.31 trang 34 SBT Toán 7 Kết nối tri thức tập 2 - KNTT
Giải bài 7.32 trang 34 SBT Toán 7 Kết nối tri thức tập 2 - KNTT
Giải bài 7.33 trang 34 SBT Toán 7 Kết nối tri thức tập 2 - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.