OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 34 trang 50 SBT Toán 7 Cánh diều tập 2 - CD

Giải bài 34 trang 50 SBT Toán 7 Cánh diều tập 2

Chứng minh:

a) \((x + 1)({x^2} - x + 1) = {x^3} + 1\)

b) \(({x^3} + {x^2} + x + 1)(x - 1) = {x^4} - 1\)

c) \((x + a)(x + b) = {x^2} + (a + b)x + ab\) (với a, b là số thực)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 34

Phương pháp giải

Biến đổi vế trái bằng vế phải bằng cách nhân các đa thức theo quy tắc

Lời giải chi tiết

a) \((x + 1)({x^2} - x + 1) = {x^3} - 1\)

Biến đổi vế trái ta có: VT = \((x + 1)({x^2} - x + 1) = x.{x^2} - x.x + x + {x^2} - x + 1\)

                                   \( = {x^3} - {x^2} + x + {x^2} - x + 1\)\( = {x^3} + 1\) = VP (ĐPCM)

b) \(({x^3} + {x^2} + x + 1)(x - 1) = {x^4} - 1\)

Biến đổi vế trái ta có: VT = \(({x^3} + {x^2} + x + 1)(x - 1) = {x^3}.x - {x^3} + {x^2}.x - {x^2} + x.x - x + x - 1\)

                                   \( = {x^4} - {x^3} + {x^3} - {x^2} + {x^2} - x + x - 1 = {x^4} - 1\) = VP (ĐPCM)

c) \((x + a)(x + b) = {x^2} + (a + b)x + ab\) (với ab là số thực)

Biến đổi vế trái ta có: VT = \((x + a)(x + b) = x.x + x.b + a.x + a.b = {x^2} + ax + bx + ab\)

                                   \( = {x^2} + (a + b)x + ab\) = VP (ĐPCM)

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 34 trang 50 SBT Toán 7 Cánh diều tập 2 - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF