OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 2 trang 96 SGK Toán 7 Cánh diều tập 2 - CD

Giải bài 2 trang 96 SGK Toán 7 Cánh diều tập 2 - CD

Cho tam giác ABC có \(\widehat A = 120^\circ \). Tia phân giác của góc A cắt cạnh BC tại D. Đường thẳng qua D song song với AB cắt cạnh AC tại E. Chứng minh rằng tam giác ADE đều.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 2

Phương pháp giải

Chứng minh tam giác ADE đều ta chứng minh ba góc trong tam giác ADE đều bằng 60°.

Lời giải chi tiết

\(\widehat A = 120^\circ \)nên \(\widehat {DAE} = 60^\circ \)(AD là phân giác của góc A).

Ta có: DE // AB nên  \(\widehat {CED} = \widehat {EAB} = 120^\circ \)(hai góc đồng vị). Ba điểm A, E, C thẳng hàng nên góc AEC bằng 180° 

\(\Rightarrow \widehat {AED} = 180^\circ  - \widehat {CED} = 180^\circ  - 120^\circ  = 60^\circ \)

Tam giác ADE có \(\widehat {EAD} = \widehat {ADE}\) (\(=60^0\)) nên là tam giác cân.

Mà \(\widehat {DEA} = 60^\circ \)

Do đó, tam giác ADE đều ( tam giác cân có 1 góc bằng \(60^0\)).

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 2 trang 96 SGK Toán 7 Cánh diều tập 2 - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF