OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 57 trang 47 SBT Toán 7 Tập 2

Giải bài 57 tr 47 sách BT Toán lớp 7 Tập 2

Đường trung trực \(d\) của đoạn thẳng \(AB\) chia mặt phẳng thành hai phần \(I\) và \(II\) như trên hình 10. Cho điểm \(M\) thuộc phần \(I\) và điểm \(N\) thuộc phần \(II.\) Chứng minh rằng:

a) \(MA < MB\)

b) \(NA > NB\) 

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng:

+) Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó.

+) Trong một tam giác, tổng hai cạnh luôn lớn hơn cạnh còn lại.

Lời giải chi tiết

a) Nối MA, MB. Gọi C là giao điểm của MB với đường thẳng d, nối CA.

Ta có:  MB = MC + CB

Mà CA = CB (tính chất đường trung trực)

Suy ra: MB = MC + CA       (1)

Trong ∆ MAC ta có:

MA < MC + CA (bất đẳng thức tam giác)          (2)

Từ (1) và (2) suy ra:  MA < MB

b) Nối NA, NB. Gọi D là giao điểm của NA với đường thẳng d, nối DB.

Ta có: NA = ND  + DB

Mà: DA = DB (tính chất đường trung trực)

Suy ra:  NA =  ND + DB                                             (3)

Trong ∆NDB ta có:

NB < ND  + DB (bất đẳng thức tam giác)        (4)

Từ (3) và (4) suy ra:  NA > NB 

-- Mod Toán 7 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 57 trang 47 SBT Toán 7 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF