OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Hoạt động 5 trang 26 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Hoạt động 5 trang 26 SGK Toán 11 Kết nối tri thức tập 1

Cho hàm số y = cos x.

a) Xét tính chẵn, lẻ của hàm số.

b) Hoàn thành bảng giá trị sau của hàm số y = cos x trên đoạn [– π; π] bằng cách tính giá trị của cos x với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của cos x với những x âm.

Bằng cách lấy nhiều điểm M(x; cos x) với x ∈ [– π; π] và nối lại ta được đồ thị hàm số y = cos x trên đoạn [– π; π].

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kì T = 2π, ta được đồ thị của hàm số y = cos x như hình dưới đây.

Từ đồ thị ở Hình 1.15, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số y = cos x.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Hoạt động 5

Phương pháp giải:

Sử dụng định nghĩa hàm số chẵn lẻ

Dựa vào đồ thị để xác định tập giá trị, các khoảng đồng biến, nghịch biến của hàm số

 

Lời giải chi tiết:

a) Hàm số y = f(x) = cos x có tập xác định là D = ℝ.

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = cos (– x) = cos x = f(x), ∀ x ∈ D.

Vậy y = cos x là hàm số chẵn.

 

b) Ta có: cos 0 = 1, \(\cos \frac{\pi }{4} = \frac{{\sqrt 2 }}{2}, \)\(\cos \frac{\pi }{2} = 0,\, \)\(\cos \frac{{3\pi }}{4} =  - \frac{{\sqrt 2 }}{2}\), cos π = – 1.

Vì y = cos x là hàm số chẵn nên \(\cos \left( { - \frac{\pi }{4}} \right) = \cos \frac{\pi }{4} = \frac{{\sqrt 2 }}{2}\), \(\cos \left( { - \frac{\pi }{2}} \right) = \cos \frac{\pi }{2} = 0\), \(\cos \left( { - \frac{{3\pi }}{4}} \right) = \cos \frac{{3\pi }}{4} =  - \frac{{\sqrt 2 }}{2}\), cos(– π) = cos π = – 1.

Vậy ta hoàn thành được bảng như sau:

 

c) Quan sát Hình 1.15, ta thấy đồ thị hàm số y = cos x có:

+) Tập giá trị là [– 1; 1];

+) Đồng biến trên mỗi khoảng (−π+k2π;k2π) (do đồ thị hàm số đi lên từ trái sang phải trên mỗi khoảng này) và nghịch biến trên mỗi khoảng \(\left( {k2\pi ;\,\pi  + k2\pi } \right),\,k \in Z\) (do đồ thị hàm số đi xuống từ trái sang phải trên mỗi khoảng này). 

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Hoạt động 5 trang 26 SGK Toán 11 Kết nối tri thức tập 1 - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Luyện tập 4 trang 26 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Vận dụng 1 trang 26 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Luyện tập 5 trang 27 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Vận dụng 2 trang 27 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Hoạt động 6 trang 28 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Luyện tập 6 trang 29 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Hoạt động 7 trang 29 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Luyện tập 7 trang 30 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Giải Bài 1.15 trang 30 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Giải Bài 1.16 trang 30 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Giải Bài 1.17 trang 30 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Giải Bài 1.18 trang 30 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Giải Bài 1.19 trang 30 SGK Toán 11 Kết nối tri thức tập 1 - KNTT

Bài tập 1.16 trang 17 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 1.17 trang 17 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 1.18 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 1.19 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 1.20 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 1.21 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 1.22 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 1.23 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 1.24 trang 19 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF