Bài tập 1.16 trang 17 SBT Toán 11 Tập 1 Kết nối tri thức
Tìm tập xác định của hàm số sau:
a) \(y = \cot 3x\);
b) \(y = \sqrt {1 - \cos 4x} \);
c) \(y = \frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}}\);
d) \(y = \sqrt {\frac{{1 + \cos 2x}}{{1 - \sin 2x}}} \).
Hướng dẫn giải chi tiết Bài 1.16
a) Biểu thức \(\cot 3x\) có nghĩa khi \(\sin 3x \ne 0\) hay \(3x \ne k\pi \)\( \Rightarrow x \ne k\frac{\pi }{3};k \in \mathbb{Z}\).
Vậy tập xác định của hàm số là: \(D = \mathbb{R}\backslash \left\{ {k\frac{\pi }{3}|k \in \mathbb{Z}} \right\}\).
b) Biểu thức \(y = \sqrt {1 - \cos 4x} \)có nghĩa khi \(1 - \cos 4x \ge 0\).
Nhưng \(\cos 4x \le 1\,\,\forall x \in \mathbb{R}\).
Vậy tập xác định của hàm số là: \(\mathbb{R}\).
c) Hàm số \(y = \frac{{\cos 2x}}{{{{\sin }^2}x - {{\cos }^2}x}}\) có nghĩa khi \({\sin ^2}x - {\cos ^2}x \ne 0\) hay \(\cos 2x \ne 0\).
\(\Rightarrow 2x \ne \frac{\pi }{2} + k\pi \Rightarrow x \ne \frac{\pi }{4} + k\frac{\pi }{2},\,\,k \in \mathbb{Z}.\)
Vậy tập xác định của hàm số là: \(\mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\frac{\pi }{2}|\,\,k \in \mathbb{Z}} \right\}.\)
d) Hàm số\(y = \sqrt {\frac{{1 + \cos 2x}}{{1 - \sin 2x}}} \) có nghĩa khi \(1 - \sin 2x \ne 0\) hay \(\sin 2x \ne 1\).
\(\Rightarrow \sin 2x \ne 1 \Rightarrow 2x \ne \frac{\pi }{2} + k\pi \Rightarrow x \ne \frac{\pi }{4} + k\frac{\pi }{2},\,k \in \mathbb{Z}.\)
Vậy tập xác định của hàm số là: \(\mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\frac{\pi }{2}|k \in \mathbb{Z}} \right\}.\)
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Giải Bài 1.18 trang 30 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 1.19 trang 30 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Bài tập 1.17 trang 17 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.18 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.19 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.20 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.21 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.22 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.23 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.24 trang 19 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.