OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 1.18 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 1.18 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức

Xét tính chẵn lẻ của các hàm số sau:

a) \(y = \frac{{\cos 2x}}{{{x^3}}}\);

b) \(y = x - \sin 3x\);

c) \(y = \sqrt {1 + \cos x} \);

d) \(y = 1 + \cos x\sin \left( {\frac{{3\pi }}{2} - 2x} \right)\).

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài 1.18

a) Tập xác định: \(D = \mathbb{R}\backslash \{ 0\} \).

Nếu kí hiệu \(f(x) = \frac{{\cos 2x}}{{{x^3}}}\) thì với mọi \(x \in D\), ta có:

\( - x \in D\) và \(f( - x) = \frac{{\cos 2( - x)}}{{{{( - x)}^3}}} = - \frac{{\cos 2x}}{{{x^3}}} = f(x).\)

Vậy hàm số đã cho là hàm số lẻ.

b) Tập xác định: \(D = \mathbb{R}\)

Nếu kí hiệu \(f(x) = x - \sin 3x\) thì với mọi \(x \in D\), ta có:

\( - x \in D\) và \(f(x) = - x - \sin 3( - x) = - (x - \sin 3x) = f(x)\).

Vậy hàm số đã cho là hàm số lẻ.

c) Tập xác định: \(D = \mathbb{R}\)

Nếu kí hiệu \(f(x) = \sqrt {1 + \cos x} \) thì với mọi\(x \in D\), ta có:

\( - x \in D\) và \(f( - x) = \sqrt {1 + \cos ( - x)} = \sqrt {1 + \cos x} = f(x)\).

Vậy hàm số đã cho là hàm số chẵn.

d) Tập xác định: \(D = \mathbb{R}\)

Nếu kí hiệu \(f(x) = 1 + \cos x\sin \left( {\frac{{3\pi }}{2} - 2x} \right)\) thì với mọi \(x \in D\), ta có:

\( - x \in D\) và \(f( - x) = 1 + \cos ( - x)\sin \left( {\frac{{3\pi }}{2} - 2( - x)} \right) = 1 + \cos x\sin \left( {\frac{{3\pi }}{2} - 2x} \right) = f(x)\)

Vậy hàm số đã cho là hàm số chẵn.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 1.18 trang 18 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF