Hướng dẫn Giải bài tập Toán 11 Chân trời sáng tạo Chương 4 Bài 4 Hai mặt phẳng song song môn Toán lớp 11 giúp các em học sinh nắm vững phương pháp giải bài tập và ôn luyện tốt kiến thức.
-
Hoạt động khởi động trang 113 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bề mặt trên của mỗi bậc thang này được đặt như thế nào so với mặt đất?
-
Hoạt động khám phá 1 trang 113 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hộp giấy có các mặt là hình vuông ở Hình 1a được vẽ lại với các đỉnh là \(A,B,C,D,A',B',C',D'\) như Hình 1b. Gọi tên cặp mặt phẳng:
a) Có ba điểm chung không thẳng hàng.
b) Là hai mặt phẳng phân biệt và có một điểm chung.
c) Không có bất kì điểm chung nào.
-
Vận dụng 1 trang 114 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Tìm phẳng song song có trong hình chụp căn phòng ở Hình 4.
-
Hoạt động khám phá 2 trang 114 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Cho mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \(a,b\) cắt nhau và cùng song song với mặt phẳng \(\left( Q \right)\). Giả sử \(\left( P \right)\) và \(\left( Q \right)\) có điểm chung \(M\) thì \(\left( P \right)\) cắt \(\left( Q \right)\) theo giao tuyến \(c\) (Hình 5).
a) Giải thích tại sao đường thẳng \(c\) phải cắt ít nhất một trong hai đường thẳng \(a,b\). Điều này có trái với giả thiết \(a\) và \(b\) cùng song song với \(\left( Q \right)\) không?
b) Rút ra kết luận về số điểm chung và vị trí tương đối của \(\left( P \right)\) và \(\left( Q \right)\).
- VIDEOYOMEDIA
-
Thực hành 1 trang 115 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Cho tứ diện \(ABCD\) có \(E,F,H\)lần lượt là trung điểm của \(AB,AC,AD\). Chứng minh \(\left( {EFH} \right)\parallel \left( {BCD} \right)\).
-
Hoạt động khám phá 3 trang 115 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
a) Cho điểm \(A\) ở ngoài mặt phẳng \(\left( Q \right)\). Trong \(\left( Q \right)\) vẽ hai đường thẳng cắt nhau \(a'\) và \(b'\). Làm thế nào để vẽ hai đường thẳng \(a\) và \(b\) đi qua \(A\) và song song với \(\left( Q \right)\)?
b) Có nhận xét gì về mối liên hệ giữa \(mp\left( {a,b} \right)\)và \(\left( Q \right)\)?
-
Hoạt động khám phá 4 trang 115 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Cho ba mặt phẳng \(\left( P \right),\left( Q \right),\left( R \right)\) thoả mãn \(\left( P \right)\parallel \left( Q \right)\), \(\left( R \right) \cap \left( P \right) = a\) và \(\left( R \right) \cap \left( Q \right) = b\). Xét vị trí tương đối của \(a\) và \(b\).
-
Thực hành 2 trang 116 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Cho hình chóp \(S.ABCD\) với đáy \(ABCD\) là hình bình hành có \(O\) là giao điểm của hai đường chéo, tam giác \(SBD\) là tam giác đều. Một mặt phẳng \(\left( \alpha \right)\) di động song song với mặt phẳng \(\left( {SBD} \right)\) và cắt đoạn thẳng \(AC\). Chứng minh các giao tuyến của \(\left( \alpha \right)\) với hình chóp tạo thành một tam giác đều.
-
Vận dụng 2 trang 116 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Khi dùng dao cắt các lớp bánh (Hình 11), giả sử bề mặt của các lớp bánh là các mặt phẳng song song và con dao được xem như mặt phẳng \(\left( P \right)\), nêu kết luận về các giao tuyến tạo bởi \(\left( P \right)\) với các bể mặt của các lớp bánh. Giải thích.
-
Hoạt động khám phá 5 trang 116 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Cho đường thẳng \(a\) song song với mặt phẳng \(\left( P \right)\), mặt phẳng \(\left( Q \right)\) chứa \(a\) và cắt \(\left( P \right)\) theo giao tuyến \(b\) (Hình 10). Trong \(\left( Q \right)\), hai đường thẳng \(a,b\) có bao nhiều điểm chung?
Cho ba mặt phẳng song song \(\left( P \right),\left( Q \right),\left( R \right)\) lần lượt cắt hai đường thăng \(a\) và \(a'\) tại các điểm \(A,B,C\) và \(A',B',C'\). Gọi \({B_1}\) là giao điểm của \(AC'\) với \(\left( Q \right)\) (Hình 12).
a) Trong tam giác \(ACC'\), có nhận xét gì về mối liên hệ giữa \(\frac{{AB}}{{BC}}\) và \(\frac{{A{B_1}}}{{{B_1}C'}}\)?
b) Trong tam giác \(AA'C'\), có nhận xét gì về mối liên hệ giữa \(\frac{{A{B_1}}}{{{B_1}C'}}\) và \(\frac{{A'B'}}{{B'C'}}\)?
c) Từ đó, nếu nhận xét về mối liên hệ giữa các tỉ số \(\frac{{AB}}{{A'B'}},\frac{{BC}}{{B'C'}},\frac{{AC}}{{A'C'}}\).
-
Thực hành 3 trang 117 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Cho hình chóp \(S.ABC\) có \(SA = 9,SB = 12,SC = 15\). Trên cạnh \(SA\) lấy các điểm \(M,N\) sao cho \(SM = 4,MN = 3,N4 = 2\). Vẽ hai mặt phẳng song song với mặt phẳng \(\left( {ABC} \right)\), lần lượt đi qua \(M,N\), cắt \(SB\) theo thứ tự tại \(M',N'\) và cắt \(SC\) theo thứ tự tại \(M'',N''\). Tính độ dài các đoạn thẳng \(SM',M'N',{\rm{ }}M''N'',N''C\).
-
Hoạt động khám phá 6 trang 117 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hình dạng của các đô vật như hộp phân, lồng đèn, hộp quà, lăng kính có đặc điểm gì giống nhau?
-
Hoạt động khám phá 7 trang 118 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Cho hình lăng trụ \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình bình hành. Chứng minh rằng:
a) Bốn mặt bên và mặt đáy còn lại của hình lăng trụ là các hình bình hành;
b) Các mặt \(AA'C'C\) và \(BB'D'D\)là hình bình hành
c) Bốn đoạn thẳng \(A'C,AC',B'D,BD\) có cùng trung điểm.
-
Thực hành 4 trang 119 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Cho hình hộp \(ABCD.A'B'C'D'\) và một mặt phẳng \(\left( \alpha \right)\) cắt các mặt của hình hộp theo các giao tuyến \(MN,NP,PQ{\rm{,}}QR,RS,SM\) như Hình 18. Chứng minh các cặp cạnh đối của lục giác \(MNPQRS\) song song với nhau.
-
Vận dụng 3 trang 119 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Tìm hình lăng trụ có thể lấy một mặt bất kì làm mặt đáy.
-
Giải Bài 1 trang 119 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Trong mặt phẳng \(\left( P \right)\) cho hình bình hành \(ABCD\). Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với \(\left( P \right)\) lần lượt đi qua các điểm \(A,B,C,D\). Một mặt phẳng \(\left( Q \right)\) cắt bốn nửa đường thẳng nói trên tại \(A',B',C',D'\). Chứng minh rằng:
\(AA' + CC' = BB' + DD'\).
-
Giải Bài 2 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình bình hành có \(O\) là giao điểm của hai đường chéo. Gọi \(M,N\) lần lượt là trung điểm của \(SA,SD\).
a) Chứng minh rằng \(\left( {OMN} \right)\parallel \left( {SBC} \right)\).
b) Gọi \(E\) là trung điểm của \(AB\) và \(F\) là một điểm thuộc \(ON\). Chứng minh \(EF\) song song với \(\left( {SBC} \right)\).
-
Giải Bài 3 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Cho hai hình vuông \(ABCD\) và \(ABEF\) ở trong hai mặt phẳng khác nhau. Trên các đường chéo \(AC\) và \(BF\) lần lượt lấy các điểm \(M,N\) sao cho \(AM = BN\). Các đường thẳng song song với \(AB\) vẽ từ \(M,N\) lần lượt cắt \(AD,AF\) tại \(M',N'\).
a) Chứng minh \(\left( {CBE} \right)\parallel \left( {ADF} \right)\).
b) Chứng minh \(\left( {DEF} \right)\parallel \left( {MNN'M'} \right)\).
-
Giải Bài 4 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \({G_1}\) và \({G_2}\) lần lượt là trọng tâm của hai tam giác \(BDA'\) và \(B'D'C\). Chứng minh \({G_1}\) và \({G_2}\) chia đoạn \(AC\) thành ba phần bằng nhau.
-
Giải Bài 5 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Để làm một khung lồng đèn kéo quân hình lăng trụ lục giác\(ABCDEF.A'B'C'D'E'F'\), Bình gắn hai thanh tre \({A_1}{D_1},{F_1}{C_1}\) song song với mặt phẳng đáy và cắt nhau tại \({O_1}\) (Hình 19).
a) Xác định giao tuyến của \(mp\left( {{A_1}{D_1},{F_1}{C_1}} \right)\) với các mặt bên của lăng trụ.
b) Cho biết \(A'{A_1} = 6A{A_1}\) và \(AA' = 70{\rm{ }}cm\). Tính \(C{C_1}\) và \({C_1}C'\).
-
Giải Bài 6 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Chỉ ra các mặt phẳng song song trong mỗi hình sau. Tìm thêm một số ví dụ khác về các mặt phẳng song song trong thực tế.
-
Bài tập 1 trang 127 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Cho hình chóp S.ABCD có đáy là hình thang ABCD, AD // BC, AD = 2BC. Gọi E, F, I lần lượt là trung điểm của các cạnh SA, AD, SD.
a) Chứng minh: (BEF) // (SCD) và CI // (BEF).
b) Tìm giao tuyến của hai mặt phẳng (SBC) và (SAD).
c) Tìm giao điểm K của FI với giao tuyến vừa tìm được ở câu b, từ đó chứng minh (SBF) // (KCD).
-
Bài tập 2 trang 127 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và CD.
a) Chứng minh (OMN) // (SBC).
b) Giả sử hai tam giác SAD và SAB là các tam giác cân tại A. Gọi AE và AF lần lượt là đường phân giác trong của hai tam giác SAD và SAB. Chứng minh EF // (SBD).
-
Bài tập 3 trang 128 SBT Toán 11 Tập 1 - CTST Chân trời sáng tạo
Cho hình hộp ABCD.A’B’C’D’. Chứng minh:
a) (BDA’) // (B’D’C).
b) Đường chéo AC’ đi qua trọng tâm G và G’ của hai tam giác BDA’ và B’D’C.
c) G và G’ chia đoạn AC’ thành ba phần bằng nhau.
-
Bài tập 4 trang 128 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M, N lần lượt là trung điểm của AB, CD. (P) là mặt phẳng đi qua MN và song song với mặt phẳng (SAD). Tìm giao tuyến của các mặt của hình chóp với mặt phẳng (P)?