OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Thực hành 1 trang 115 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Thực hành 1 trang 115 SGK Toán 11 Chân trời sáng tạo tập 1

Cho tứ diện \(ABCD\) có \(E,F,H\)lần lượt là trung điểm của \(AB,AC,AD\). Chứng minh \(\left( {EFH} \right)\parallel \left( {BCD} \right)\).

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Thực hành 1

Phương pháp giải:

Sử dụng định lí 1: Nếu mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \(a,b\) cắt nhau và hai đường thẳng đó cùng song song với mặt phẳng \(\left( Q \right)\) thì \(\left( P \right)\) song song với \(\left( Q \right)\).

 

Lời giải chi tiết:

Ta có: \(E\) là trung điểm của \(AB\)

\(F\) là trung điểm của \(AC\)

\( \Rightarrow EF\) là đường trung bình của tam giác \(ABC\)

\(\left. \begin{array}{l} \Rightarrow EF\parallel BC\\BC \subset \left( {BC{\rm{D}}} \right)\end{array} \right\} \Rightarrow EF\parallel \left( {BC{\rm{D}}} \right)\)

\(E\) là trung điểm của \(AB\)

\(H\) là trung điểm của \(AD\)

\( \Rightarrow EH\) là đường trung bình của tam giác \(ABD\)

\(\left. \begin{array}{l} \Rightarrow EH\parallel BD\\BD \subset \left( {BC{\rm{D}}} \right)\end{array} \right\} \Rightarrow EH\parallel \left( {BC{\rm{D}}} \right)\)

Ta có:

\(\left. \begin{array}{l}EF\parallel \left( {BCD} \right)\\EH\parallel \left( {BCD} \right)\\EF,EH \subset \left( {EFH} \right)\end{array} \right\} \Rightarrow \left( {EFH} \right)\parallel \left( {BCD} \right)\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Thực hành 1 trang 115 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Vận dụng 1 trang 114 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Hoạt động khám phá 2 trang 114 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Hoạt động khám phá 3 trang 115 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Hoạt động khám phá 4 trang 115 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Thực hành 2 trang 116 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Vận dụng 2 trang 116 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Hoạt động khám phá 5 trang 116 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Thực hành 3 trang 117 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Hoạt động khám phá 6 trang 117 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Hoạt động khám phá 7 trang 118 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Thực hành 4 trang 119 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Vận dụng 3 trang 119 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 1 trang 119 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 2 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 3 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 4 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 5 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 6 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Bài tập 1 trang 127 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 2 trang 127 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 3 trang 128 SBT Toán 11 Tập 1 - CTST Chân trời sáng tạo

Bài tập 4 trang 128 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF