Thực hành 4 trang 119 SGK Toán 11 Chân trời sáng tạo tập 1
Cho hình hộp \(ABCD.A'B'C'D'\) và một mặt phẳng \(\left( \alpha \right)\) cắt các mặt của hình hộp theo các giao tuyến \(MN,NP,PQ{\rm{,}}QR,RS,SM\) như Hình 18. Chứng minh các cặp cạnh đối của lục giác \(MNPQRS\) song song với nhau.
Hướng dẫn giải chi tiết Thực hành 4
Phương pháp giải:
Sử dụng định lí 3: Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau. Nếu \(\left( R \right)\) cắt \(\left( P \right)\) thì cắt \(\left( Q \right)\) và hai giao tuyến của chúng song song.
Lời giải chi tiết:
Ta có:
\(\left. \begin{array}{l}\left( {ABC{\rm{D}}} \right)\parallel \left( {A'B'C'D'} \right)\\\left( \alpha \right) \cap \left( {ABC{\rm{D}}} \right) = MN\\\left( \alpha \right) \cap \left( {A'B'C'D'} \right) = Q{\rm{R}}\end{array} \right\} \Rightarrow MN\parallel Q{\rm{R}}\)
\(\left. \begin{array}{l}\left( {AA'B'B} \right)\parallel \left( {CC'D'D} \right)\\\left( \alpha \right) \cap \left( {AA'B'B} \right) = NP\\\left( \alpha \right) \cap \left( {CC'D'D} \right) = R{\rm{S}}\end{array} \right\} \Rightarrow NP\parallel R{\rm{S}}\)
\(\left. \begin{array}{l}\left( {AA'D'D} \right)\parallel \left( {BB'C'C} \right)\\\left( \alpha \right) \cap \left( {AA'D'D} \right) = M{\rm{S}}\\\left( \alpha \right) \cap \left( {BB'C'C} \right) = PQ\end{array} \right\} \Rightarrow M{\rm{S}}\parallel PQ\)
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Hoạt động khám phá 6 trang 117 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Hoạt động khám phá 7 trang 118 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Vận dụng 3 trang 119 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 1 trang 119 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 2 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 3 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 4 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 5 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 6 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 1 trang 127 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 2 trang 127 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 128 SBT Toán 11 Tập 1 - CTST Chân trời sáng tạo
Bài tập 4 trang 128 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.