OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 40 trang 46 SGK Toán 11 NC

Bài tập 40 trang 46 SGK Toán 11 NC

Tìm các nghiệm của mỗi phương trình sau trong khoảng đã cho (khi cần tính gần đúng thì tính chính xác đến \(\frac{1}{{10}}\) giây)

a.  \(2{\sin ^2}x - 3\cos x = 2,{0^0} \le x \le {360^0}\)

b.  \(\tan x + 2\cot x = 3,\,\,{180^0} \le x \le {360^0}\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

a)

\(\begin{array}{*{20}{l}}
\begin{array}{l}
2{\sin ^2}x - 3\cos x = 2\\
 \Leftrightarrow 2{\cos ^2}x + 3\cos x = 0
\end{array}\\
\begin{array}{l}
 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{\cos x = 0}\\
{\cos x = \frac{{ - 3}}{2}\left( l \right)}
\end{array}} \right.\\
 \Leftrightarrow x = {90^0} + k{180^0}\left( {k \in Z} \right)
\end{array}
\end{array}\)

Vậy với điều kiện 00 ≤ x ≤ 3600, phương trình có hai nghiệm là x = 900 và x = 2700.

b) ĐKXĐ: sinx ≠ 0 và cosx ≠ 0. Ta có:

\(\begin{array}{l}
\tan x + 2\cot x = 3\\
 \Leftrightarrow {\tan ^2}x - 3\tan x + 2 = 0\\
 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{\tan x = 1}\\
{\tan x = 2}
\end{array}} \right.
\end{array}\)

  • \(\tan x = 1 \Leftrightarrow x = {45^0} + k{180^0}\). Có một nghiệm thỏa mãn 1800 ≤ x ≤ 3600, ứng với k = 1 là x = 2250
  • \(\tan x = 1 \Leftrightarrow x = \alpha  + k{180^0}\) với tanα = 2. Ta có thể chọn \(\alpha  \approx {63^0}265,8\)

Vậy có một nghiệm (gần đúng) thỏa mãn 1800 ≤ x ≤ 3600 là:

\(x = \alpha  + {180^0} \approx {243^0}265,8\)

Kết luận: Với điều kiện 1800 ≤ x ≤ 360 , phương trình có hai nghiệm và \(x \approx {243^0}265,8\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 40 trang 46 SGK Toán 11 NC HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF