OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Thực hành 2 trang 117 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Thực hành 2 trang 117 SGK Toán 10 Chân trời sáng tạo tập 1

Hãy tìm tứ phân vị của các mẫu số liệu sau:

a) 10; 13; 15; 2; 10; 19; 2; 5; 7

b) 15; 19; 10; 5; 9; 10; 1; 2; 5; 15

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Thực hành 2

Phương pháp giải

Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.

Bước 2: Tính cỡ mẫu n, tìm tứ phân vị thứ hai \({Q_2}\)(chính là trung vị của mẫu).

Bước 3: Tìm tứ phân vị thứ nhất: là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

Bước 4: Tìm tứ phân vị thứ ba: là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

Lời giải chi tiết

a) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:

2; 2; 5; 7; 10; 10; 13; 15; 19

+) Vì cỡ mẫu là \(n = 9\), là số lẻ, nên giá trị tứ phân vị thứ hai là \({Q_2} = 10\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 2; 2; 5; 7.

Do đó \({Q_1} = \frac{1}{2}(2 + 5) = 3,5\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 13; 15; 19.

Do đó \({Q_3} = \frac{1}{2}(13 + 15) = 14\)

b) Sắp xếp lại mẫu số liệu theo thứ tự không giảm, ta được:

1; 2; 5; 5; 9; 10; 10; 15; 15; 19

+) Vì cỡ mẫu là \(n = 10\), là số chẵn, nên giá trị tứ phân vị thứ hai là \({Q_2} = \frac{1}{2}(9 + 10) = 9,5\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 1; 2; 5; 5; 9.

Do đó \({Q_1} = 5\)

+) Tứ phân vị thứ nhất là trung vị của mẫu: 10; 10; 15; 15; 19.

Do đó \({Q_3} = 15\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Thực hành 2 trang 117 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF