OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 2 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 2 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1

Gọi AM  là trung tuyến của tam giác ABC và D là trung điểm của đoạn AM. Chứng minh rằng:

a) \(2\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = \overrightarrow 0 \)

b)  \(2\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 4\overrightarrow {OD} \)        với O là điểm tùy ý

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 2

Phương pháp giải

Sử dụng tính chất trung điểm \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \) với là trung điểm của AB

Lời giải chi tiết

AM  là trung tuyến của tam giác ABC, suy ra là trung điểm của BC

\(2\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = 2\overrightarrow {DA}  + \left( {\overrightarrow {DB}  + \overrightarrow {DC} } \right) \\= 2\overrightarrow {DA}  + 2\overrightarrow {DM}  = 2\left( {\overrightarrow {DA}  + \overrightarrow {DM} } \right) = \overrightarrow 0 \)

(là trung điểm của AM nên \(\overrightarrow {DA}  + \overrightarrow {DM}  = \overrightarrow 0 \))

b)

\(\begin{array}{l}2\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 2\overrightarrow {OA}  + \left( {\overrightarrow {OB}  + \overrightarrow {OC} } \right) = 2\overrightarrow {OA}  + 2\overrightarrow {OM} \\ = 2\left( {\overrightarrow {OA}  + \overrightarrow {OM} } \right) = 2.2\overrightarrow {OD}  = 4\overrightarrow {OD} \end{array}\) 

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 2 trang 97 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF