OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 19 trang 80 SGK Toán 10 NC

Bài tập 19 trang 80 SGK Toán 10 NC

Giải phương trình x2 + (4m + 1)x + 2(m - 4) = 0, biết rằng nó có hai nghiệm và hiệu giữa nghiệm lớn và nghiệm nhỏ bằng 17.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Ta có: 

Δ = (4m + 1)2 – 8( m – 4)

\(= 16{m^2} + 8m + 1 - 8m + 32\)

= 16m2 + 33 > 0; ∀m

Do đó, phương trình luôn có hai nghiệm phân biệt 

x1  + x2 = - 4m – 1; x1x2 = 2(m – 4) (x1 > x2)

Ta có:

 x1 – x2 = 17  ⇔ (x1 – x2)2 = 289

⇔ (x1 + x2)2 – 4x1x2 = 289

⇔ (4m + 1)2 – 8(m – 4) = 289

⇔ 16m2 + 33 = 289

⇔ m = ± 4

+) Với m = 4 phương trình có 2 nghiệm:

\(\eqalign{
& {x_1} = {{ - 17 - \sqrt {289} } \over 2} = - 17 \cr 
& {x_2} = {{ - 17 + \sqrt {289} } \over 2} = 0 \cr} \)

+) Với m = -4 phương trình có 2 nghiệm:

\(\eqalign{
& {x_1} = {{15 - \sqrt {289} } \over 2} = - 1 \cr 
& {x_2} = {{15 + \sqrt {289} } \over 2} = 16 \cr} \)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 19 trang 80 SGK Toán 10 NC HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF