OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Với ba số \(a, b, c\) không âm, chứng minh bất đẳng thức: \(a + b + c \ge \sqrt {ab} + \sqrt {bc} + \sqrt {ca} \)

  bởi Tay Thu 18/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Vì \(a, b\) và \(c\) không âm nên \(\sqrt a;\sqrt b \) và \(\sqrt c \) tồn tại.

    Ta có: \({\left( {\sqrt a  - \sqrt b } \right)^2} \ge 0\) suy ra:

    \(\eqalign{
    & a + b - 2\sqrt {ab} \ge 0 \Leftrightarrow a + b \ge 2\sqrt {ab} \cr 
    & \Leftrightarrow {{a + b} \over 2} \ge \sqrt {ab} \,\,(1) \cr} \)

    \({\left( {\sqrt b  - \sqrt c } \right)^2} \ge 0\) suy ra:

    \(\eqalign{
    & b + c - 2\sqrt {bc} \ge 0 \Leftrightarrow b + c \ge 2\sqrt {bc} \cr 
    & \Leftrightarrow {{b + c} \over 2} \ge \sqrt {bc} \,\,(2) \cr} \)

    \({\left( {\sqrt c  - \sqrt a } \right)^2} \ge 0\) suy ra:

    \(\eqalign{
    & c + a - 2\sqrt {ca} \ge 0 \Leftrightarrow c + a \ge 2\sqrt {ca} \cr 
    & \Leftrightarrow {{c + a} \over 2} \ge \sqrt {ca} \,\,(3) \cr} \)

    Cộng từng vế các bất đẳng thức (1), (2) và (3), ta có:

    \(\dfrac{{a + b}}{2} + \dfrac{{b + c}}{2} + \dfrac{{c + a}}{2} \)\(\ge \sqrt {ab}  + \sqrt {bc}  + \sqrt {ca} \) 

    \(\Leftrightarrow \dfrac{{2a + 2b+2c}}{2} \)\(\ge \sqrt {ab}  + \sqrt {bc}  + \sqrt {ca} \) 

    \( \Leftrightarrow a + b + c \ge \sqrt {ab}  + \sqrt {bc}  + \sqrt {ca} \)

      bởi trang lan 18/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF