OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Tính x^4−2x^3+x−căn(2(x^2−x))=0

\(x^4-2x^3+x-\sqrt{2\left(x^2-x\right)}=0\)

  bởi hồng trang 21/01/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(x^4-2x^3+x-\sqrt{2\left(x^2-x\right)}=0\) (ĐK: \(x\le0\) hoặc \(x\ge1\) )

    \(\Leftrightarrow\left(x^4-2x^3+x^2\right)-\left(x^2-x\right)-\sqrt{2\left(x^2-x\right)}=0\)

    \(\Leftrightarrow\left(x^2-x\right)^2-\left(x^2-x\right)-\sqrt{2\left(x^2-x\right)}=0\)

    Đặt \(t=x^2-x,t\ge0\) , phương trình trở thành : 

    \(t^2-t-\sqrt{2t}=0\Leftrightarrow t^2-t=\sqrt{2t}\Leftrightarrow t^4-2t^3+t^2=2t\Leftrightarrow t^4-2t^3+t^2-2t=0\Leftrightarrow t\left(t-2\right)\left(t^2+1\right)=0\)

    \(\Leftrightarrow\left[\begin{array}{nghiempt}t=0\\t=2\end{array}\right.\)

    Với t = 0 ta có phương trình : \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\left(TM\right)\\x=1\left(TM\right)\end{array}\right.\)

    Với t = 2 ta có phương trình : \(x^2-x=2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\left(TM\right)\\x=2\left(TM\right)\end{array}\right.\)

    Thử lại, ta thấy các giá trị của x trên đều thoả mãn nghiệm của phương trình.

    Vậy tập nghiệm của phương trình : \(S=\left\{-1;0;1;2\right\}\)

      bởi Trọng Phạm 21/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF