OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm nghiệm của: \(\sqrt {2\left( {{x^4} + 4} \right)} = 3{x^2} - 10x + 6\)

Tìm nghiệm của: \(\sqrt {2\left( {{x^4} + 4} \right)}  = 3{x^2} - 10x + 6\)

  bởi Anh Trần 11/07/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Điều kiện: \(3{x^2} - 10x + 6 \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge \dfrac{{5 + \sqrt 7 }}{3}\\x \le \dfrac{{5 - \sqrt 7 }}{3}\end{array} \right.\)

    Hai vế không âm, ta bình phương hai vế ta được:

    \(\begin{array}{l}{\left( {\sqrt {2\left( {{x^4} + 4} \right)} } \right)^2} = {\left( {3{x^2} - 10x + 6} \right)^2}\\ \Leftrightarrow 2{x^4} + 8 = 9{x^4} + 100{x^2} + 36 - 60{x^3} + 36{x^2} - 120x\\ \Leftrightarrow 7{x^4} - 60{x^3} + 136{x^2} - 120x + 28 = 0\,\,\left( 2 \right)\end{array}\)

    +) TH1: Với x = 0 thay vào phương trình (2) ta được: 28 = 0 (vô lý).

    Vậy x = 0 không phải là nghiệm của phương trình đã cho.

    +) TH2: Với \(x \ne 0\) , chia cả hai vế cho \({x^2}\) ta được:

    \(\begin{array}{l}7{x^2} - 60x + 136 - \dfrac{{120}}{x} + \dfrac{{28}}{{{x^2}}} = 0\\ \Leftrightarrow \left( {7{x^2} + \dfrac{{28}}{{{x^2}}}} \right) - \left( {60x + \dfrac{{120}}{x}} \right) + 136 = 0\\ \Leftrightarrow 7\left( {{x^2} + \dfrac{4}{{{x^2}}}} \right) - 60\left( {x + \dfrac{2}{x}} \right) + 136 = 0\,\,\,\left( 3 \right)\end{array}\)

    Đặt: \(t = x + \dfrac{2}{x}\left( {t \ge 2\sqrt 2 } \right)\)

    Ta có: \({t^2} = {\left( {x + \dfrac{2}{x}} \right)^2} = {x^2} + \dfrac{4}{{{x^2}}} + 4 \)

    \(\Rightarrow {x^2} + \dfrac{4}{{{x^2}}} = {t^2} - 4\)

      Khi đó (3) trở thành:

    \(\begin{array}{l}7\left( {{t^2} - 4} \right) - 60t + 136 = 0\\ \Leftrightarrow 7{t^2} - 60t + 108 = 0\\ \Leftrightarrow \left( {t - 6} \right)\left( {7t - 18} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t - 6 = 0\\7t - 18 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 6\left( {tm} \right)\\t = \dfrac{{18}}{7}\left( {ktm} \right)\end{array} \right..\end{array}\)

    Với t = 6 ta có:

    \(x + \dfrac{2}{x} = 6 \Leftrightarrow {x^2} - 6x + 2 = 0\)

    Ta có:

     \(\begin{array}{l}\Delta  = 9 - 2 = 7 > 0\\ \Rightarrow {x_1} = 3 - \sqrt 7 ;{x_2} = 3 + \sqrt 7 \left( {tm} \right)\end{array}\)

    Vậy tập nghiệm của phương trình là: \(S = \left\{ {3 - \sqrt 7 ;3 + \sqrt 7 } \right\}\)

      bởi Hoàng Anh 12/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF