OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Tìm Min của biểu thức P=a^3+b^3+c^3/2abc + a^2+b^2/c^2+ab + b^2+c^2/a^2+bc + c^2+a^2/b^2+ca

cho a,b,c là 3 số thực dương , tìm min của bt \(P=\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ca}\)

  bởi minh dương 14/02/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta chứng minh \(P\ge\frac{9}{2}\). Ta đã có: \(\frac{a^3+b^3+c^3}{2abc}\ge\frac{3abc}{2abc}=\frac{3}{2}\)

    Vậy cần chứng minh \(\frac{a^{2}+b^{2}}{c^{2}+ab}+\frac{b^{2}+c^{2}} {a^{2}+bc}+\frac{c^{2}+a^{2}}{b^{2}+ac}\geq 3\)

    \(\Leftrightarrow a^{2}(\frac{1}{c^{2}+ab}+\frac{1}{b^{2}+ac)}+b^{2}(\frac{1}{c^{2}+ab}+\frac{1}{a^{2}+bc})+c^{2}( \frac{1}{a^{2}+bc}+\frac{1}{b^{2}+ac})\)

    \(\geq \frac{4a^{2}}{(a+b)(b+c)}+\frac{4b^{2}}{(c+a)(c+b) }+\frac{4c^{2}}{(a+b)(a+c)}\)

    \(\geq \frac{4(a+b+c)^{2}}{(a+b)(b+c)+(c+a)(c+b)+(a+c)(a+ b)}\geq 3\)

    BĐT đã được chứng minh

    Vậy ta có \(P_{min}=\frac{9}{2}\) khi \(a=b=c\)

      bởi Trần Thị Trang 14/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF