OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm min của biểu thức M = x^2 + 1/y − 6 x + y + 2015

Cho các số thực x,y với y \(\ge\) 2 . Tìm min của biểu thức : \(M=x^2+\dfrac{1}{y}-6x+y+2015\)

  bởi Nguyễn Anh Hưng 22/02/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • My = x2y + 1 - 6xy + y2 + 2015y

    My = y(x2 - 6x + 9) + 2006y + y2 + 1

    My = y(x - 3)2 + 2006y + y2 + 1

    Có (x - 3)2 \(\ge\) 0 => y(x - 3)2 \(\ge\) 0 (1)

    y \(\ge\) 2 => 2006y \(\ge\) 4012 (2)

    y2 \(\ge\) 4 (3)

    Từ (1) ; (2) và (3) => My \(\ge\) 0 + 4012 + 4 +1 = 4017

    Dấu "=" xảy ra <=> x = 3 và y = 2

    Thay y = 2 => M = \(\dfrac{4017}{2}\)

    Vậy Mmin = \(\dfrac{4017}{2}\) <=> x = 3 và y = 2

      bởi Ngọc Chi 22/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF