OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Tìm Max của xy+yz+2xz

cho \(x^2+y^2+z^2=1\) tìm Max xy+yz+2xz

  bởi Nguyễn Anh Hưng 22/02/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Có thể thấy rằng:
    xy + yz + 2zx = y(x + z) + 2zx <= lyllx + zl + 2zx (1).
    Lại có lx + zl <= căn[2(x^2 + z^2)] = căn[2(1 - y^2)] và 2zx <= z^2 + x^2 = 1 - y^2; từ đây suy ra
    xy + yz + 2zx <= lylcăn[2(1 - y^2)] + 1 - y^2 (2).
    Tiếp đến, ta sẽ chứng minh lylcăn(2(1 - y^2)] + 1 - y^2 <= căn(3)/2 + 1/2 (3), từ đó suy ra kết quả của bài toán. Thật vậy, ta có
    lylcăn(2(1 - y^2)] + 1 - y^2 <= căn(3)/2 - 1/2 <=> lylcăn[2(1 - y^2)] <= y^2 + căn(3)/2 - 1/2
    <=> 2y^2(1 - y^2) <= y^4 + (căn(3) - 1)y^2 + (căn(3)/2 - 1/2)^2
    <=> 3y^4 - (3 - căn(3))y^2 + (căn(3)/2 - 1/2)^2
    <=> 3y^4 - 2căn(3)(căn(3)/2 - 1/2)y^2 + (căn(3)/2 - 1/2)^2
    <=> (căn(3)y^2 - căn(3)/2 + 1/2)^2 >= 0.
    Đẳng thức xảy ra khi y = căn[1/2 - 1/2căn(3)] hoặc y = -căn[1/2 - 1/2căn(3)].
    Từ (1),(2),(3) suy ra
    xy + yz + 2zx <= căn(3)/2 + 1/2.
    Dấu = xảy ra khi dấu = của (1),(2),(3) cùng xảy ra, tức là x = z = (1/2)căn[(1 + căn(3))/căn(3)] và y = căn[1/2 - 1/2căn(3)], hoặc x = z = (-1/2)căn[(1 + căn(3))/căn(3)] và y = -căn[1/2 - 1/2căn(3)].

      bởi Thảo Nhi 22/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF