OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm m để phương trình x^2 - 2(m-2)x + m^2 + 4 = 0có 2 nghiệm phân biệt và nghiệm này gấp đôi nghiệm kia

X2 _ 2(m-2)x + m2 + 4 = 0 . Tìm m để phương trình có 2 nghiệm phân biệt và nghiệm này gấp đôi nghiệm kia

  bởi Hy Vũ 26/10/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Giả sử :x1= 2x2

    Ta có: \(\Delta'=\left(-\left(m-2\right)\right)^2-m^2-4\)\(=m^2-4m+4-m^2-4\)

    \(=-4m\)

    Để phương trình có 2nghiệm phân biệt ⇒ -4m > 0 ⇌ m < 0

    ⇒ Phương trình có 2 nghiệm phân biệt: x1;x2

    Do x1= 2x2

    Theo hệ thức Vi-ét , ta có:

    \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3x_2=2m-4\\2\left(x_2\right)^2=m^2+4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3x_2=2m-4\\\left(x_2\right)^2=\dfrac{m^2+4}{2}\end{matrix}\right.\)

    ⇒ (3x2)2 = (2m-4)2

    ⇌ 9(x2)2 = 4m2 - 16m + 16

    \(\dfrac{9m^2+36}{2}=4m^2-16m+16\)

    ⇌ 9m2 + 36 = 8m2 - 32m + 32

    ⇌ m2 + 32m + 4 = 0

    ⇌ (m2 + 32m + 256) - 252 =0

    ⇌ (m + 16)2 -(\(6\sqrt{7}\))2 =0

    ⇌ (m + 16 + \(6\sqrt{7}\))(m + 16 -\(6\sqrt{7}\)) = 0

    \(\left[{}\begin{matrix}m+16+6\sqrt{7}=0\\m+16-6\sqrt{7}=0\end{matrix}\right.\)\(\left[{}\begin{matrix}m=-16-6\sqrt{7}\\m=6\sqrt{7}-16\end{matrix}\right.\)(thỏa mãn điều kiện)

    Vậy với m = -16 - \(6\sqrt{7}\) hoặc m = \(6\sqrt{7}\) -16 thì pt có 2 nghiệm phân biệt thỏa mãn nghiệm này gấp đôi nghiệm kia

      bởi Nguyễn Hoàng 26/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF