OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm m để hai phương trình sau tương đương: \({x^2} + mx - 2 = 0\) và \({x^2} - 2x + m = 0\).

  bởi Minh Tuyen 18/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • +) Trường hợp 1 : Hai phương trình cùng vô nghiệm ( điều này không xảy ra vì phương trình \({x^2} + mx - 2 = 0\) có \(a = 1; c = − 2  \Rightarrow   ac < 0\) nên luôn có nghiệm).

    +) Trường hợp 2 : Hai phương trình có nghiệm

    \( \Leftrightarrow \left\{ \matrix{  {\Delta _1} \ge 0 \hfill \cr  \Delta {'_2} \ge 0 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  {m^2} + 8 \ge 0 \hfill \cr  1 - m \ge 0 \hfill \cr}  \right. \)\(\;\Leftrightarrow m \le 1.\)

    Khi đó, hai phương trình tương đương \( \Leftrightarrow \left\{ \matrix{  {S_1} = {S_2} \hfill \cr  {P_1} = {P_2} \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{   - m = 2 \hfill \cr   - 2 = m \hfill \cr}  \right. \)\(\;\Leftrightarrow m =  - 2.\)

    Vậy \(m = - 2.\)        

      bởi thuy linh 18/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF