OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Tìm m để hai nghiêm x_1, x_2 thoả mãn x_1/x_2 +x_2/x_1+5/2=0

(m-1)x^2-2mx+m+1=0

tìm m để hai nghiêm x1,x2 thoả mãn x1/x2 +x2/x1+5/2=0

  bởi Đào Thị Nhàn 13/02/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Phương trình: \(\left(m-1\right)x^2-2mx+m+1=0\left(1\right)\) đk: \(m\ne1\)

    Xét phương trình (1) có:

    \(\Delta=4m^2-4\left(m-1\right)\left(m+1\right)\)

    = \(4m^2-4m^2+4=4\)

    Vì 4>0 \(\Leftrightarrow\Delta>0\)

    \(\Rightarrow\) Phương trình có 2 nghiệm phân biệt với mọi m

    Áp dụng hệ thức Vi-ét ta có:

    \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-1}\\x_1.x_2=\dfrac{m+1}{m-1}\end{matrix}\right.\)

    Theo đề bài ta có:

    \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}=0\)

    \(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}+\dfrac{5}{2}=0\)

    \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}+\dfrac{5}{2}=0\)

    \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2}{x_1x_2}-2+\dfrac{5}{2}=0\)

    \(\Leftrightarrow\left(\dfrac{2m}{m-1}\right)^2:\dfrac{m+1}{m-1}+\dfrac{1}{2}=0\)

    \(\Leftrightarrow\dfrac{4m^2}{\left(m-1\right)^2}.\dfrac{m-1}{m+1}+\dfrac{1}{2}=0\)

    \(\Leftrightarrow\dfrac{4m^2}{\left(m-1\right)\left(m+1\right)}+\dfrac{1}{2}=0\)

    \(\Leftrightarrow8m^2+\left(m-1\right)\left(m+1\right)=0\)

    \(\Leftrightarrow9m^2-1=0\)

    \(\Leftrightarrow m^2=\dfrac{1}{9}\)

    \(\Leftrightarrow m=\pm\dfrac{1}{3}\) (tm)

    Vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}=0\) thì \(m=\pm\dfrac{1}{3}\)

      bởi Vũ Hoàng Thu An 13/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF