OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Tìm giao điểm của hai đường thẳng \(\left( {{d_1}} \right):ax + 2y = - 3\) và \(\left( {{d_2}} \right):3x - by = 5,\) biết rằng \(({d_1})\) đi qua điểm \(M(3; 9)\) và \(({d_2})\) đi qua điểm \(N(-1; 2).\)

  bởi Thùy Trang 19/02/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Vì \(\left( {{d_1}} \right):ax + 2y = -3\) đi qua điểm \(M (3; 9)\) nên \(a.3 + 2.9 =  - 3 \Leftrightarrow 3a =  - 21 \\ \Leftrightarrow a =  - 7\)

    Khi đó phương trình đường thẳng \(\left( {{d_1}} \right): - 7x + 2y =  - 3\)

    Vì \(\left( {{d_2}} \right):3x - by = 5\) đi qua điểm \(N (-1; 2)\) nên \(3.\left( { - 1} \right) - b.2 = 5 \Leftrightarrow  - 2b = 8 \\ \Leftrightarrow b =  - 4\)

    Khi đó phương trình đường thẳng \(\left( {{d_2}} \right):3x + 4y = 5\)

    Tọa độ giao điểm của \(({d_1})\)và \(({d_2})\) là nghiệm của hệ phương trình:

    \(\eqalign{
    & \left\{ {\matrix{
    { - 7x + 2y = - 3} \cr 
    {3x + 4y = 5} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
    {y = \displaystyle {{7x - 3} \over 2}} \cr 
    {\displaystyle 3x + 4.{{7x - 3} \over 2} = 5} \cr} } \right. \cr 
    & \Leftrightarrow \left\{ {\matrix{
    {y = \displaystyle {{7x - 3} \over 2}} \cr 
    {17x = 11} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
    {y =\displaystyle {{7x - 3} \over 2}} \cr 
    {x = \displaystyle{{11} \over {17}}} \cr} } \right. \cr 
    & \Leftrightarrow \left\{ {\matrix{
    {x =\displaystyle {{11} \over {17}}} \cr 
    {y = \displaystyle {{13} \over {17}}} \cr} } \right. \cr} \)

    Vậy tọa độ giao điểm của \(({d_1})\)và \(({d_2})\) là \(\displaystyle\left( {{{11} \over {17}};{{13} \over {17}}} \right)\).

      bởi Lan Anh 19/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF