OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Tìm giá trị nhỏ nhất của biểu thức T = a/1+9b^2 + b/1+9c^2 + c/1+9a^2

Cho a, b, c là các số dương thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức:

\(T=\dfrac{a}{1+9b^2}+\dfrac{b}{1+9c^2}+\dfrac{c}{1+9a^2}\)

  bởi Dell dell 18/01/2019
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có:

    \(\dfrac{a}{1+9b^2}=a-\dfrac{9ab^2}{1+9b^2}\ge a-\dfrac{9ab^2}{6b}=a-\dfrac{3ab}{2}\)

    \(\Rightarrow T\ge a+b+c-\dfrac{3}{2}\left(ab+bc+ca\right)\)

    \(\ge a+b+c-\dfrac{1}{2}\left(a+b+c\right)^2=1-\dfrac{1}{2}=\dfrac{1}{2}\)

      bởi Phạm Hoàng 18/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF