OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm giá trị của m để phương trình x^2-2mx+m-1 có 2 nghiệm phân biệt

Cho phương trình \(x^2-2mx+m-1=0\)

tìm giá trị của m để phương trình có 2 nghiệm \(x_1,x_2\)

  bởi Lê Nhi 29/10/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Xét phương trình có:

    \(\Delta=\left(-2m\right)^2-4\left(m-1\right)\)

    = \(4m^2-4m+4\)

    = \(\left(4m^2-4m+1\right)+3\)

    = \(\left(2m-1\right)^2+3\)

    Ta luôn có: \(\left(2m-1\right)^2\ge0\) với mọi m

    \(\Rightarrow\left(2m-1\right)^2+3>0\) với mọi m

    \(\Rightarrow\) Phương trình có 2 nghiệm phân biệt với mọi m

      bởi Trần Văn Phước 29/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF