OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm các số nguyên x,y thỏa 2x^2+2y^2-2xy+x+y=0

tìm các số nguyên x,y thỏa: 2x2+2y2-2xy+x+y=0

HELP ME!! PLEASE!!!!!!!

  bởi hai trieu 29/10/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải:

    Ta có:

    \(2x^2+2y^2-2xy+x+y=0\)

    \(\Leftrightarrow 2x^2+x(1-2y)+(2y^2+y)=0\)

    Coi đây là pt bậc 2 ẩn $x$. Để pt có nghiệm thì:

    \(\Delta=(1-2y)^2-8(2y^2+y)\geq 0\)

    \(\Leftrightarrow -12y^2-12y+1\geq 0\)

    \(\Rightarrow -12y^2-12y+24>0\)

    \(\Rightarrow -y^2-y+2>0\)

    \(\Rightarrow (1-y)(y+2)>0\Rightarrow -2< y< 1\)

    \(y\in\mathbb{Z}\Rightarrow y\in \left\{-1;0\right\}\)

    +) Nếu \(y=-1\Rightarrow 2x^2+2+2x+x-1=0\)

    \(\Leftrightarrow 2x^2+3x+1=0\)

    \(\Leftrightarrow (2x+1)(x+1)=0\Rightarrow x=-1\) vì $x$ nguyên

    +) Nếu \(y=0\Rightarrow 2x^2+x=0\Leftrightarrow x(2x+1)=0\Rightarrow x=0\) (vì $x$ nguyên)

    Vậy \((x,y)\in \left\{(-1,-1); (0,0)\right\}\)

      bởi Phạm Nguyên 29/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF