OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Hãy giải hệ phương trình sau đây: \(\left\{ \begin{array}{l}x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1\\\left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1\end{array} \right.\)

Hãy giải hệ phương trình sau đây: \(\left\{ \begin{array}{l}x\sqrt 5  - \left( {1 + \sqrt 3 } \right)y = 1\\\left( {1 - \sqrt 3 } \right)x + y\sqrt 5  = 1\end{array} \right.\) 

  bởi Trinh Hung 07/07/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Nhân hai vế của phương trình thứ nhất với \(\sqrt 5 \) , ta được  \(5.x - \sqrt 5 \left( {1 + \sqrt 3 } \right)y = \sqrt 5 \)

    Nhân hai vế của phương trình thứ hai với \(\left( {1 + \sqrt 3 } \right)\), ta được \( - 2x + y\sqrt 5 \left( {1 + \sqrt 3 } \right) = \left( {1 + \sqrt 3 } \right)\)

    Cộng từng vế của hai phương trình mới nhận được, ta có \(3x = 1 + \sqrt 5  + \sqrt 3 \) suy ra \(x = \dfrac{{1 + \sqrt 5  + \sqrt 3 }}{3}\)

    Nhân hai vế của phương trình thứ nhất với \(1 - \sqrt 3 \) , ta được \(x\sqrt 5 \left( {1 - \sqrt 3 } \right) + 2y = 1 - \sqrt 3 \) 

    Nhân hai vế của phương trình thứ hai với \( - \sqrt 5 \) , ta được \( - \sqrt 5 \left( {1 - \sqrt 3 } \right)x - 5y =  - \sqrt 5 \)

    Cộng từng vế của hai phương trình mới nhận được, ta có \( - 3y = 1 - \sqrt 5  - \sqrt 3 \) suy ra \(x = \dfrac{{ - 1 + \sqrt 5  + \sqrt 3 }}{3}\)

    Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {\dfrac{{\sqrt 5  + \sqrt 3  + 1}}{3};\dfrac{{\sqrt 5  + \sqrt 3  - 1}}{3}} \right)\)

      bởi Hoàng Anh 07/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF