OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm 3 giờ và người thứ hai làm 6 giờ thì chỉ hoàn thành được 25% công việc. Cho biết nếu làm riêng thì mỗi người hoàn thành công việc đó trong bao lâu ?

Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm 3 giờ và người thứ hai làm 6 giờ thì chỉ hoàn thành được 25% công việc. Cho biết nếu làm riêng thì mỗi người hoàn thành công việc đó trong bao lâu ?  

  bởi hành thư 07/07/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Bước 1:  Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc trong \(x\) (giờ); người thứ hai trong \(y\) (giờ) (điều kiện là: \(x;y > 16\)) 

    Khi đó, trong 1 giờ người thứ nhất làm được \(\dfrac{1}{x}\) công việc; người thứ hai làm được \(\dfrac{1}{y}\) công việc nên cả hai người làm được \(\dfrac{1}{x} + \dfrac{1}{y}\)  công việc.

    Hai người cùng làm trong 16 giờ thì xong nên ta có phương trình \(\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{16}}\) 

    Người thứ nhất làm trong 3 giờ và người thứ hai làm trong 6 giờ thì chỉ hoàn thành được \(25\%  = \dfrac{1}{4}\) công việc. Điều đó dẫn đến phương trình \(3.\dfrac{1}{x} + 6.\dfrac{1}{y} = \dfrac{1}{4}\) 

    Ta có hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{16}}\\3.\dfrac{1}{x} + 6.\dfrac{1}{y} = \dfrac{1}{4}\end{array} \right.\)

    Bước 2: Đặt \(\dfrac{1}{x} = u;\dfrac{1}{y} = v\,\),  ta được hệ phương trình bậc nhất hai ẩn \(u\) và \(v\).

    \(\left\{ \begin{array}{l}u + v = \dfrac{1}{{16}}\\3u + 6v = \dfrac{1}{4}\end{array} \right.\)

    Ta giải hệ phương trình này bằng phương pháp cộng đại số:

    \(\left\{ \begin{array}{l}u + v = \dfrac{1}{{16}}\\3u + 6v = \dfrac{1}{4}\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}3u + 3v = \dfrac{3}{{16}}\\3u + 6v = \dfrac{1}{4}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}u + v = \dfrac{1}{{16}}\\3v = \dfrac{1}{{16}}\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}v = \dfrac{1}{{48}}\\u = \dfrac{1}{{24}}\end{array} \right.\,\left( {\,thỏa\, mãn} \right)\)

    Trở về phương trình đầu, ta được \(x = \dfrac{1}{u} = 24\left( {\,thỏa\, mãn} \right)\) và \(y = \dfrac{1}{v} = 48\left( {\,thỏa\, mãn} \right)\)

    Bước 3: Vậy người thứ nhất làm riêng trong \(24\) giờ thì xong công việc, người thứ hai làm riêng trong \(48\) giờ thì xong công việc.

      bởi Phạm Khánh Ngọc 07/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF