OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải phương trình |x−2013|^5+|x−2014|^7=1

giải pt: \(\left|x-2013\right|^5+\left|x-2014\right|^7=1\)

  bởi Nguyễn Thị Thanh 16/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải:

    Ta có:

    \(|x-2013|^5+|x-2014|^7=1\)

    \(\Rightarrow \left\{\begin{matrix} |x-2013|^5=1-|x-2014|^7\leq 1\\ |x-2014|^7=1-|x-2013|^5\leq 1\end{matrix}\right.\)

    \(\Rightarrow \left\{\begin{matrix} |x-2013|\leq 1\\ |x-2014|\leq 1\end{matrix}\right.\)

    \(\Rightarrow \left\{\begin{matrix} -1\leq x-2013\leq 1\\ -1\leq x-2014\leq 1\end{matrix}\right.\)

    \(\Leftrightarrow \left\{\begin{matrix} 2012\leq x\leq 2014\\ 2013\leq x\leq 2015\end{matrix}\right.\) hay \(2013\leq x\leq 2014\)

    Nếu \(x=2013, x=2014\): thử vào pt ban đầu thấy đều thỏa mãn.

    Nếu \(2013< x< 2014\)

    \(\Rightarrow |x-2013|=x-2013; |x-2014=2014-x\)

    Đặt \(x-2013=a\).

    PT trở thành

    \((x-2013)^5+(2014-x)^7=1\)

    \(\Leftrightarrow a^5+(1-a)^7=1\)

    \(\Leftrightarrow (a^5-1)+(1-a)^7=0\)

    \(\Leftrightarrow (a-1)[a^4+a^3+a^2+a+1-(a-1)^6]=0\)

    Vì \(2013< x< 2014\Rightarrow 0< a< 1\).

    \(\Rightarrow a-1< 0\) hay \(a-1\neq 0\)

    Suy ra \(a^4+a^3+a^2+a+1-(a-1)^6=0\)

    \(\Leftrightarrow a^4+a^3+a^2+a+1=(a-1)^6(*)\)

    Ta thấy \(0< a<1 \Rightarrow \text{VT}>1\)

    \(0< a< 1\Rightarrow -1< a-1< 0\Rightarrow (a-1)^6< 1\Leftrightarrow \text{VP}<1\)

    (*) không xảy ra.

    Vậy PT có nghiệm \(x\in \left\{2013; 2014\right\}\)

      bởi Nguyen Anh 16/01/2019
    Like (2) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF