OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giải phương trình (x+1)^4/(x2+1)^2+4x/x^2+1=6

B1: giai pt: a, \(\dfrac{\left(x+1\right)^4}{\left(x^2+1\right)^2}+\dfrac{4x}{x^2+1}=6\)

B2: Tính giá trị của A= \(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)

B3: CMR voi 3 số thực a,b,c tùy ý thì ít nhất 1 trong 3 pt sau phải có nghiệm:

\(x^2-2ax+2b-1=0\left(1\right);x^2-2bx+2c-1=0\left(2\right);x^2-2cx+2a-1=0\left(3\right)\)

  bởi Tram Anh 30/01/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Bài 1:
    \(\frac{(x+1)^4}{(x^2+1)^2}+\frac{4x}{x^2+1}=6\)

    \(\Leftrightarrow \frac{(x+1)^4+4x(x^2+1)}{(x^2+1)^2}=6\)

    \(\Leftrightarrow \frac{x^4+8x^3+6x^2+8x+1}{(x^2+1)^2}=6\Rightarrow x^4+8x^3+6x^2+8x+1=6(x^2+1)^2\)

    \(\Leftrightarrow x^4+8x^3+6x^2+8x+1=6(x^4+2x^2+1)\)

    \(\Leftrightarrow 5x^4-8x^3+6x^2-8x+5=0\)

    \(\Leftrightarrow 5x^3(x-1)-3x^2(x-1)+3x(x-1)-5(x-1)=0\)

    \(\Leftrightarrow (x-1)(5x^3-3x^2+3x-5)=0\)

    \(\Leftrightarrow (x-1)[5(x-1)(x^2+x+1)-3x(x-1)]=0\)

    \(\Leftrightarrow (x-1)^2(5x^2+2x+5)=0\)

    Dễ thấy \(5x^2+2x+5>0\), do đó \((x-1)^2=0\Leftrightarrow x=1\)

      bởi Nguyen Ngoc 30/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF