OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giải hệ phương trình x^3-2x^2y+x=y^3-2xy^2+y, căn(y-1) + căn(5-y)=-x^2+2y+1

Giải hệ phương trình :

\(\left\{{}\begin{matrix}x^3-2x^2y+x=y^3-2xy^2+y\\\sqrt{y-1}+\sqrt{5-y}=-x^2+2y+1\end{matrix}\right.\)

  bởi Truc Ly 15/01/2019
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Lời giải:

    PT(1): \(x^3-2x^2y+x=y^3-2xy^2+y\)

    \(\Leftrightarrow (x^3-y^3)-2xy(x-y)+(x-y)=0\)

    \(\Leftrightarrow (x-y)(x^2+xy+y^2)-2xy(x-y)+(x-y)=0\)

    \(\Leftrightarrow (x-y)(x^2-xy+y^2+1)=0\)

    Ta thấy:

    \(x^2-xy+y^2+1=(x-\frac{y}{2})^2+\frac{3y^2}{4}+1\geq 1>0\) với mọi số thực x,y

    Do đó: \(x-y=0\Leftrightarrow x=y\)

    Thay vào PT(2):

    \(\sqrt{y-1}+\sqrt{5-y}=-y^2+2y+1\)

    Xét: \(\text{VT}^2=4+2\sqrt{(y-1)(5-y)}\geq 4\) nên \(\text{VT}\geq 2\) hoặc \(\text{VT}\leq -2\). Mà vế trái luôn không âm nên:

    \(\Rightarrow \text{VT}\geq 2\)

    Xét \(\text{VP}=-(y^2-2y+1)+2=2-(y-1)^2\leq 2\forall y\in\mathbb{R}\)

    \(\text{VT}=\text{VP}\Leftrightarrow \text{VT}=\text{VP}=2\)

    Dấu bằng xảy ra khi \(y=1\)

    Vậy \((x,y)=(1,1)\)

      bởi Nguyễn David 15/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF