OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải hệ phương trình sau bằng phương pháp thế: \(\left\{\begin{matrix} (\sqrt{2}- 1)x - y = \sqrt{2}& & \\ x + (\sqrt{2}+ 1)y = 1& & \end{matrix}\right.\)

  bởi Hoang Vu 17/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có:

    \(\left\{ \matrix{
    \left( {\sqrt 2 - 1} \right)x - y = \sqrt 2 \hfill \cr 
    x + \left( {\sqrt 2 + 1} \right)y = 1 \hfill \cr} \right. \)

    \(\left\{ \begin{array}{l}y = \left( {\sqrt 2  - 1} \right)x - \sqrt 2 \,\,\,\,\,\left( 1 \right)\\x + \left( {\sqrt 2  + 1} \right)\left[ {\left( {\sqrt 2  - 1} \right)x - \sqrt 2 } \right] = 1\,\,\,\left( 2 \right)\end{array} \right.\)

    Giải phương trình \((2)\), ta được:

    \(x + \left( {\sqrt 2 + 1} \right)\left[ { \left( {\sqrt 2 - 1} \right)x} -\sqrt 2 \right] = 1\)

    \(\Leftrightarrow  x +  (\sqrt 2 + 1) (\sqrt 2 - 1)x -( \sqrt 2 + 1). \sqrt 2   = 1\)

    \(\Leftrightarrow  x +  {\left((\sqrt 2)^2 - 1^2 \right)}x-( 2 + \sqrt 2)  = 1\)

    \(\Leftrightarrow x + x  = 1+( 2 + \sqrt 2)\)

    \(\Leftrightarrow 2x =3 +\sqrt 2\)

    \(\Leftrightarrow x=\dfrac{3+ \sqrt 2}{2}\)

    Thay \(x=\dfrac{3+ \sqrt 2}{2}\) vào \((1)\), ta được:

    \(y =  \left( {\sqrt 2 - 1} \right).\dfrac{3+ \sqrt 2}{2}  - \sqrt 2\)

    \( \Leftrightarrow y= \dfrac{(\sqrt 2 - 1 )(3+ \sqrt 2)}{2}  - \sqrt 2 \)

    \( \Leftrightarrow y= \dfrac{3\sqrt 2 -3 +2 -\sqrt 2}{2}  - \sqrt 2 \)

    \( \Leftrightarrow y= \dfrac{2\sqrt 2 -1}{2}  - \sqrt 2 \)

    \( \Leftrightarrow y= \dfrac{2\sqrt 2 -1-2\sqrt 2}{2}  \)

    \( \Leftrightarrow y= \dfrac{-1}{2}  \)

    Vậy hệ có nghiệm \((x; y) = {\left(\dfrac{3 + \sqrt{2}}{2};\dfrac{-1}{2} \right)}\)

      bởi Nguyễn Hoài Thương 18/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF