OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải hệ phương trình 2x^3-1=5y-5x, x^3+y^3=1

Giải hệ phương trình \(\left\{{}\begin{matrix}2x^3-1=5y-5x\\x^3+y^3=1\end{matrix}\right.\)

( mình đang cần gấp, mọi người giúp tớ với )

  bởi Mai Hoa 15/01/2019
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Lời giải:

    Ta có: Thay \(1=x^3+y^3\) vào phương trình thứ nhất

    \(\Rightarrow 2x^3-(x^3+y^3)=5y-5x\)

    \(\Leftrightarrow x^3-y^3=5y-5x\)

    \(\Leftrightarrow (x-y)(x^2+xy+y^2)=5(y-x)\)

    \(\Leftrightarrow (x-y)(x^2+xy+y^2+5)=0\)

    Ta thấy \(x^2+xy+y^2+5=(x+\frac{y}{2})^2+\frac{3}{4}y^2+5>0, \forall x,y\in\mathbb{R}\)

    Do đó: \(x-y=0\Leftrightarrow x=y\)

    Suy ra: \(1=x^3+y^3=2x^3\Leftrightarrow x^3=\frac{1}{2}\Rightarrow x=\sqrt[3]{\frac{1}{2}}\)

    Vậy hpt có nghiệm \((x,y)=\left(\sqrt[3]{\frac{1}{2}}; \sqrt[3]{\frac{1}{2}}\right)\)

      bởi Hoàng Văn KIên 15/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF